Hortonworks Data Platform

Ambari Views Guide

(Jul 21, 2015)

docs.hortonworks.com

Hortonworks Data Platform: Ambari Views Guide

Copyright © 2012-2015 Hortonworks, Inc. All rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, Zookeeper and Ambari. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to Contact Us directly to discuss your specific needs.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Table of Contents

1.	Using Ambari Views	1
2.	Running Ambari Server Standalone	2
	2.1. Prerequisites	2
	2.2. Standalone Server Setup	3
	2.3. Reverse Proxy	3
3.	Configuring Views for Kerberos	4
	Using the Tez View	
	4.1. Configuring Your Cluster for Tez View	
	4.2. Creating or Editing the Tez View Instance	
	4.2.1. User Permissions for Tez Views	
	4.2.2. Kerberos Setup for Tez Views	
	4.3. Using the Tez View	
	4.3.1. Understanding Directed Acyclic Graphs (DAGs), Vertices, and Tasks	
	4.3.2. Identifying the Tez DAG for Your Job	
	4.3.3. Understanding How Your Tez Job Is Executed	12
	4.3.4. Identifying Causes of Failed Jobs	
	4.3.5. Viewing All Failed Tasks	
	4.3.6. Using Counters to Identify the Cause of Slow-Performing Jobs	
5	Using the Pig View	
٦.	5.1. Configuring Your Cluster for Pig View	
	5.2. Creating the Pig View Instance	
	5.2.1. Getting the Fig View instance	10
		10
	E 2.2 Hear Demoisions for Din Viscos	
	5.2.2. User Permissions for Pig Views	
	5.2.3. Kerberos Setup for Pig Views	
	5.3. Using the Pig View	
	5.3.1. Writing Pig Scripts	
	5.3.2. Viewing Pig Script Execution History	
_	5.3.3. User-Defined Functions (UDFs) Tab	
6.	Using the Capacity Scheduler View	
	6.1. Configuring your Cluster for the Capacity Scheduler View	
	6.2. Creating a Capacity Scheduler View Instance	
	6.2.1. User Permissions for Capacity Scheduler Views	
	6.3. Using the Capacity Scheduler View	
	6.3.1. Setting up Queues	
	6.3.2. Configuring Queues	
	6.3.3. Configuring Cluster Scheduler Settings	
	6.3.4. Applying the Configuration Changes	
	6.4. Troubleshooting	
7.	Using the Hive View	
	7.1. Configuring Your Cluster for Hive View	
	7.2. Creating the Hive View Instance	41
	7.2.1. Getting Correct Configuration Values for Manually-Deployed Clusters	
	7.2.2. User Permissions for Hive Views	
	7.2.3. Kerberos Setup for Hive Views	44
	7.3. Using the Hive View	45
	7.3.1. Query Tab	45

7.3.2. Saved Queries Tab	. 49
7.3.3. History Tab	. 50
7.3.4. UDF Tab	. 50
8. Using the Slider View	. 5
8.1. Deploying the Slider View	5′
9. Using the Files View	. 52
9.1. Configuring Your Cluster for Files View	52
9.2. Creating the Files View Instance	. 52

List of Figures

2.1. Configuring Views with your HDP Cluster	
4.1. Tez View Create Instance Page	6
4.2. Tez View Instance Page	
4.3. Granting User Permissions to Tez Views	8
4.4. SQL Query Execution in Hive	
4.5. Tez View Column Selector Dialog Box	. 11
4.6. View Tab in Tez View	. 12
4.7. DAG Details Window	. 13
4.8. Tez View All Tasks Tab	
4.9. Tez View DAG-Level Counters Tab	. 14
4.10. Tez View Vertex-Level Counters Tab	14
4.11. Tez View Task-Level Counters Tab	
5.1. Pig View Details and Settings	. 17
5.2. Pig View Cluster Configuration	
5.3. HDFS Service Page in Ambari	
5.4. Using the Filter to Search Advanced hdfs-site Settings	19
5.5. Granting User Permissions to Pig Views	. 20
5.6. Kerberos Settings for Pig Views	
5.7. Pig Script Running in the Pig View	
5.8. Pig View Script History Tab	
5.9. Pig View UDFs Tab	
7.1. Hive View Details and Settings	
7.2. Hive View Cluster Configuration	
7.3. HDFS Service Page in Ambari	
7.4. Using the Filter to Search Advanced hdfs-site Settings	
7.5. Granting User Permissions to Hive Views	. 44
7.6. Hive View Kerberos Configuration Example	
7.7. Hive View Database Explorer	. 46
7.8. Query Editor	
7.9. Query Results and Logs in Hive View Query Editor	
7.10. Query Editor Textual Explain Feature	48
7.11. Query Editor Visual Explain Feature	48
7.12. Tez View Query Debugging Option	. 49
7.13. Query Editor Error Message Summary Window	
7.14. Query Editor Error Message Details Window	
7.15. Saved Queries Tab	. 50
7.16. History Tab	. 50
7.17 UDF Tab	50

List of Tables

4.1. Cluster Configurations for Tez View	. 5
4.2. Cluster Configuration Values for the Tez View in Ambari	. 7
4.3. Kerberos Settings for Tez Views	. 9
4.4. Tez Job Status Descriptions	11
5.1. Finding Cluster Configuration Values for the Pig View in Ambari	18
5.2. Pig View Settings for NameNode High Availability	18
7.1. Finding Cluster Configuration Values for the Hive View in Ambari	42
7.2. Hive View Settings for NameNode High Availability	43
7.3. Kerberos Settings for Hive Views	44

1. Using Ambari Views

Ambari includes the Ambari Views Framework, which allows for developers to create UI components that "plug into" the Ambari Web interface. Ambari includes a built-in set of Views that are pre-deployed for you to use with your cluster. This guide provides information on configuring the built-in set of Views, as well as information on how to configure Ambari Server for "standalone" operation.

Note

Views can be deployed and managed in the "operational" Ambari Server that is operating your cluster. In addition, Views can be deployed and managed in one or more separate "standalone" Ambari Servers. Running "standalone" Ambari Server instances is useful when users who will access views will not have (and should not) have access to that Ambari Server that is operating the cluster. As well, you can run one or more separate Ambari Server instances "standalone" for a scale-out approach to handling a large number of users. See Running Ambari Standalone for more information.

The sections below describe the built-in Views and their configuration:

View	Description	HDP Stacks	Required Services
Capacity Scheduler	Provides a visual way to configure YARN capacity scheduler queue capacity.	HDP 2.3 or later	YARN
Files	Allows you to browse the HDFS file system.	HDP 2.2 or later	HDFS
Hive	Exposes a way to find, author, execute and debug Hive queries.	HDP 2.3 or later	HDFS, YARN, Hive
Pig	Provides a way to author and execute Pig Scripts.	HDP 2.2 or later	HDFS, Hive (WebHCat), Pig
Slider	A tool to help deploy and manage Slider-based applications.	HDP 2.1 or later	HDFS, YARN
Tez	View information related to Tez jobs that are executing on the cluster.	HDP 2.2.4.2 or later	HDFS, YARN, Tez

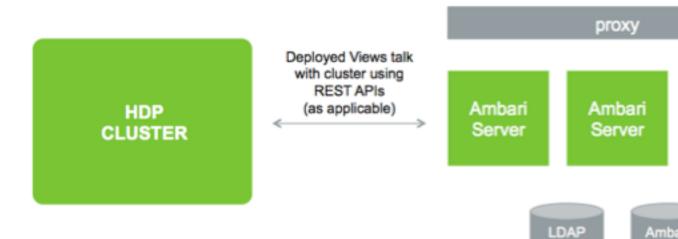
Learning More About Views

You can learn more about the Views Framework at the following resources:

Resource	URL
Administering Views Ambari Administration Guide - Managing Views	
Ambari Project Wiki	https://cwiki.apache.org/confluence/display/AMBARI/Views
Example Views	https://github.com/apache/ambari/tree/trunk/ambari-views/examples
View Contributions	https://github.com/apache/ambari/tree/trunk/contrib/views

2. Running Ambari Server Standalone

You can run one or more separate Ambari Server instances running in "standalone" mode. Running "standalone" Ambari Server instances is useful when users who will access views will not have (and should not) have access to that Ambari Server that is operating the cluster. As well, you can run one or more separate Ambari Server instances "standalone" for a scale-out approach to handling a large amount of users. See Reverse Proxy for more information.


2.1. Prerequisites

There are several requirements that need to be considered when setting up multiple Ambari Server "standalone" instances:

- Ambari Server instances should be the same version.
- The Ambari Server instances should point to the same underlying database.
- Ambari database should be scaled and made highly-available, independent of Ambari Server.
- If using an external authentication source (such as LDAP or Active Directory), Ambari Server authentication should be configured the same for all Ambari Server instances.
- If the cluster you are accessing with Views is Kerberos-enabled, you need to configure Ambari and the Views for Kerberos.
- Run the multiple "standalone" Ambari Server instances behind a Reverse Proxy.

After your standalone Ambari Servers are setup and configured, you can configure the views to communicate with your HDP cluster.

Figure 2.1. Configuring Views with your HDP Cluster

2.2. Standalone Server Setup

Setting up a standalone Ambari Server instance is very similar to setting up an operational Ambari Server. Many of the steps are the same, with one key **exception: you do not install a cluster with a standalone Ambari Server**. A standalone Ambari Server does not manage a cluster and does not deploy or communicate with Ambari Agents. The standalone Ambari Server runs as web server instance, serving views for users.

Important

Refer to the Ambari Install Guide for the details steps for setting up an Ambari Server. For a standalone Ambari Server instance, you are not required to install a cluster.

Important

Refer to Managing Views in the Ambari Administration Guide for information on deploying and configuring Views.

The following table compares the high-level tasks required to setup an operational Ambari Server vs. a standalone Ambari Server.

	Operational Ambari Server	Standalone Ambari Server
1	Install ambari -server package	Install ambari -server package
2	Run ambari -server setup (DB, JDK)	Run ambari -server setup (DB, JDK)
3	Configure external LDAP authentication	Configure external LDAP authentication
4	Install Cluster	NA
5	Deploy views	Deploy views
6	Create + configure view instances	Create + configure view instances
7		(Optional) Repeat for each Ambari Server instance
8		(Optional) Setup proxy for Ambari Server instances

2.3. Reverse Proxy

If you require a larger number of users to access Ambari Views, it may be necessary to "scale-out" the Ambari Server by installing and running multiple Ambari Server standalone instances that host Ambari Views and run those instances behind a reverse proxy.

If a reverse proxy fronts the standalone Ambari Server instances, the only requirement is that the reverse proxy honors session affinity, meaning that once a session has been established the reverse proxy routes each subsequent request to the same Ambari server instance. Depending on the reverse proxy implementation, this can be accomplished in a number of different ways, including hashing client IP and using the JSESSIONID header.

Important

Using multiple Ambari Server instances and a reverse proxy in front of those instances is **not supported** for an operational Ambari Server. It is only supported for standalone Ambari Server instances (i.e. Ambari instances that are not managing a cluster).

3. Configuring Views for Kerberos

If the cluster your views will communicate with is Kerberos-enabled, you need to configure the Ambari Server instance(s) for Kerberos and be sure to configure the views to work with Kerberos.

Refer to the Set Up Kerberos for Ambari for the instructions on how to configure Ambari Server for Kerberos. Be sure to configure all standalone Ambari Server instances.

Important

Be sure to install the Kerberos client utilities on the Ambari Server so that Ambari can kinit.

RHEL/CentOS/Oracle Linux

yum install krb5-workstation

SLES

zypper install krb5-client

Once your Ambari Server is setup for Kerberos, be sure to follow the specific instructions with each view on how to configure the view for Kerberos and the cluster for Kerberos access from the view.

4. Using the Tez View

Tez is an framework for building high performance batch and interactive data processing applications. Apache Hive and Pig use the Tez framework. When you run a job such as a Hive query or Pig script using Tez, you can use the Tez View to track and debug the execution of that job. Topics in this chapter describe how to configure, deploy and use the Tez View to execute jobs in your cluster:

- Configuring Your Cluster for Tez View
- Creating the Tez View Instance
- Using the Tez View

4.1. Configuring Your Cluster for Tez View

When you deploy a cluster with Ambari, a Tez View instance is automatically created. However, you must verify that the configurations listed in the following table have been correctly set.

If you have manually deployed your cluster, you must set the properties listed in the following table to configure your cluster before you create the Tez View on your standalone Ambari server.

To configure your cluster for the Tez View:

1. Confirm the following configurations are set:

Table 4.1. Cluster Configurations for Tez View

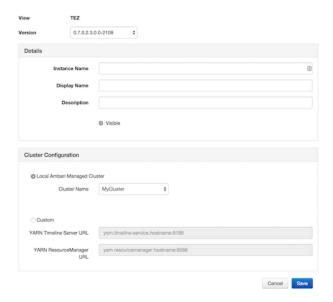
Component	Configuration	Property	Comments
YARN	yarn-site.xml	yarn.resourcemanager. system-metrics- publisher.enabled	Enable the generic history service in the Timeline Server. Verify that this property is set to true.
YARN	yarn-site.xml	yarn.timeline- service.enabled	Enable the Timeline Server for logging details. Verify that this property is set to true.
YARN	yarn-site.xml	yarn.timeline- service.webapp.address	Value must be the IP: PORT on which the Timeline Server is running.

2. If you changed any settings, you must restart the YARN ResourceManager and the Timeline Server for your changes to take effect.

Important

If you do not need to reconfigure the Ambari-created Tez View, see Using the Tez View.

4.2. Creating or Editing the Tez View Instance


Depending on whether you must create a new Tez View instance for a manually deployed cluster or modify an Ambari-created Tez View, see one of the following sections:

- Modifying a Tez View Instance on an Ambari-Managed Cluster [6]
- Creating a New Tez View Instance on a Manually-Deployed Cluster [6]

To modify a Tez View instance on an Ambari-managed cluster:

- 1. Navigate to the Ambari Administration interface.
- 2. Click Views and expand the Tez View.
- 3. On the Create Instance page, change the appropriate configuration parameters.
- 4. Select Local Ambari-Managed Cluster:

Figure 4.1. Tez View Create Instance Page

Important

Secure clusters that use wire encryption (SSL/TSL) cannot use the **Local Ambari Managed Cluster** option. Instead you must configure the view as described in the instructions for manually-deployed clusters [6].

5. Click Save, grant Permissions on the view (see User Permissions for Tez Views), and click Go to instance to use the view. See Using the Tez View.

To create a new Tez View instance for a manually-deployed cluster:

1. Navigate to the Ambari Administration interface.

- 2. Click Views, expand the Tez View, and click Create Instance.
- 3. On the Create Instance page, select the **Version**.
- 4. Enter the Details (required). The Instance Name appears in the URI, the Display Name appears in the Views drop-down list, and the Description helps multiple users identify the view.
- 5. Scroll down to the Cluster Configuration, verify that **Custom** is checked and enter the following values, which tell the Tez View how to access resources in the cluster:

Table 4.2. Cluster Configuration Values for the Tez View in Ambari

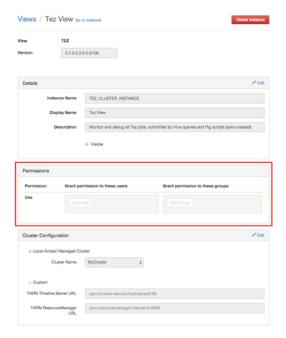
Property	Value
YARN Timeline Server URL (required)	The URL to the YARN Application Timeline Server, used to provide Tez information. Typically, this is the yarn.timeline-service.webapp.address property that is specified in the etc/hadoop/conf/yarn-site.xml.
	When you enter the value in the view definition, prepend "http://" to the value you find in the yarn-site.xml file. For example, http:// <timeline host="" server="">:8188</timeline>
	For wire encryption-enabled clusters:
	Set this based on the value of yarn.timeline-service.webapp.https.address in yarn-site.xml
	When you enter the value in the view definition, prepend "https://" to the value. For example, https:// <timeline host="" server="">:8190</timeline>
YARN ResourceManager URL (required)	The URL to the YARN ResourceManager, used to provide YARN Application data. Typically, this is the yarn.resourcemanager.webapp.address property that is specified in the etc/hadoop/conf/yarn-site.xml.
	When you enter the value in the view definition, prepend "http://" to the value you find in the yarn-site.xml file. For example, http:// <resourcemanager host="">:8088</resourcemanager>
	For wire encryption-enabled clusters:
	Set this based on the value of yarn.resourcemanager.webapp.https.address in yarn-site.xml
	When you enter the value in the view definition, prepend "https://" to the value. For example, https:// <resourcemanager host="">:8090</resourcemanager>

- 6. Click Save and grant Permissions on the view (see User Permissions for Tez Views).
- 7. At the top of the view instance configuration page, click **Go to instance**.
- 8. When your browser is at the view instance page, copy the URL for the Tez View from your browser address bar:

Figure 4.2. Tez View Instance Page

- 9. In tez-site.xml, specify the URL that you copied in Step 8 as the value for the tez.tez-ui.history-url.base property, and save the file.
- 10.Restart the HiveServer2 daemon to make sure that your changes to tez-site.xml take effect.

To use the view, see Using the Tez View.


Important

If your cluster is configured for Kerberos, you must set up Ambari Server for Kerberos for the Tez View to access the ATS component. See Kerberos Setup for Tez Views.

4.2.1. User Permissions for Tez Views

After saving the Tez View instance definition, grant permission on the view for the set of users who can use the view:

Figure 4.3. Granting User Permissions to Tez Views

Note

To grant access to all Hive and Pig users, create a group that contains these users, and then grant permission to use the Tez View to that group. See also the "Managing Users and Groups" section in the Administering Ambari guide.

4.2.2. Kerberos Setup for Tez Views

To set up basic Kerberos for views, see "Set Up Kerberos for Ambari Server" in the Ambari Security Guide.

After you have set up basic Kerberos for the Tez View, you must set the following configuration properties:

1. Set the following values for properties in the YARN configuration for Ambari-managed clusters or the yarn-site.xml for manually deployed clusters:

Table 4.3. Kerberos Settings for Tez Views

Property	Value
<pre>yarn.timeline-service.http- authentication.proxyuser.\${ambari principal name}.hosts</pre>	*
yarn.timeline-service.http- authentication.proxyuser.\${ambari principal name}.users	*
yarn.timeline-service.http- authentication.proxyuser.\${ambari principal name}.groups	*

For example, if the Kerberos principal used for the Ambari server is ambari-service@EXAMPLE.COM, replace \${ambari principal name} with ambari-server.

2. Restart the Timeline Server so your configuration changes take effect.

4.3. Using the Tez View

Tez provides a framework that enables human-interactive response times with Apache Hive queries and Apache Pig data transformations. The Tez View enables you to understand and debug submitted Tez jobs, such as Hive queries or Pig scripts, that are executed using the Tez execution engine.

The following sections discuss using the Tez Views to manage Hive and Pig tasks:

- Understanding DAGs, Vertices, and Tasks
- Identifying the Tez DAG for Your Job
- Understanding How Your Tez Job Is Executed
- Identifying Causes of Failed Jobs

- Viewing All Failed Tasks
- Using Counters to Identify the Cause of Slow-Performing Jobs

4.3.1. Understanding Directed Acyclic Graphs (DAGs), Vertices, and Tasks

To explain DAGs, vertices, and tasks, consider how Hive SQL queries are compiled and converted into a Tez execution graph also known as a DAG. A *DAG* is a collection of vertices where each vertex executes a fragment of the query or script. Directed connections between vertices determine the order in which they are executed. For example, the vertex to read a table must be run before a filter can be applied to the rows of that table.

As another example, consider when a vertex reads a user table. This table can be very large and distributed across multiple computers and multiple racks. Reading the table is achieved by running many tasks in parallel. The following figure shows the execution of a SQL query in Hive:

SELECT * FROM customers SQL Query GROUP BY state Calcite Cost Based Optimizer Hive Physical Optimizer Tez Execution DAG Global Group By: state Table Scan: customers Vertex Local Group By: state Table Scan: Tasks customers. Table customers: distributed over many machines **HDFS**

Figure 4.4. SQL Query Execution in Hive

4.3.2. Identifying the Tez DAG for Your Job

To identify the Tez DAG for your job:


1. Navigate to the Tez View instance by clicking **Go to instance** on the Tez View page in Ambari. The Tez View instance page displays a list of jobs sorted by time, listing the latest jobs first. You can search a job using the following fields:

- Dag Name (DAG name for the job)
- Id (DAG identifier)
- Submitter (user who submitted the job)
- **Status** (job status)
- Application ID
- 2. When you have entered your search criteria, press **Enter**, and search results matching your criteria are returned below.

Selecting the Columns That Appear in Search Results

To select which columns are included in the Tez View search results, click the gear icon to the right of the search tool bar. A Column Selector dialog box appears where you can select which columns appear in the search results. Select the columns, and click **Ok** to return to the Tez View:

Figure 4.5. Tez View Column Selector Dialog Box

Note

To search for columns, use the search well at the top of the Column Selector dialog box. Check **Select All** to include all columns in your search results and uncheck it to clear all of your column selections.

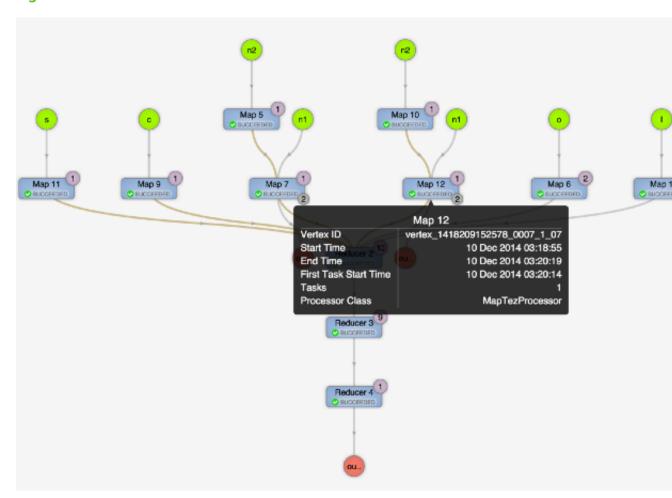
Understanding Tez View Job Status

The following table explains the job status field that is returned for all search results returned in the Tez View:

Table 4.4. Tez Job Status Descriptions

Status	Description
Submitted	The DAG is submitted to Tez but is not running.
Running	The DAG is currently running.
Succeeded	The DAG completed successfully.
Failed	The DAG failed to complete successfully.

S	itatus	Description
K	Cilled	The DAG was stopped manually.
Е	rror	An internal error occurred when executing the DAG.


4.3.3. Understanding How Your Tez Job Is Executed

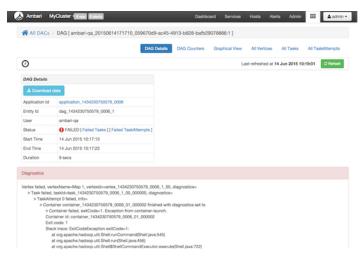
The Tez View enables you to gain insight into the complexity and the progress of executing jobs.

The View tab shows the following:

- DAG graphical view
- All vertices
- Tasks per vertex on top right of the vertex
- Failed vertices display in red, successful vertices display in green
- Mouse over vertices to view timeline details

Figure 4.6. View Tab in Tez View

The View Tab enables you to investigate the vertices that have failures or are taking a long time.


4.3.4. Identifying Causes of Failed Jobs

The Tez View enables you to quickly find and report errors. When a Tez task fails, you must:

- · Identify why the task failed
- Capture the reason for task failure

When a Tez task fails, the DAG Details tab explains the failure:

Figure 4.7. DAG Details Window

4.3.5. Viewing All Failed Tasks

Multiple task failures may occur. The Tez View All Tasks tab enables you to view all tasks that failed and examine the reason and logs for each failure. Logs for failed tasks, but not for aborted tasks are available to download from this tab:

Figure 4.8. Tez View All Tasks Tab

4.3.6. Using Counters to Identify the Cause of Slow-Performing Jobs

The Tez View shows counters so you can understand why a task performs more slowly than expected. Counters help you better understand the task size and enable you to locate anomalies. Elapsed time is one of the primary counters to look for.

Counters are available at the DAG, vertex, and task levels:

Figure 4.9. Tez View DAG-Level Counters Tab

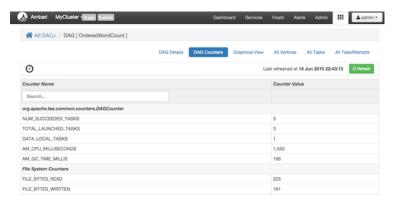


Figure 4.10. Tez View Vertex-Level Counters Tab

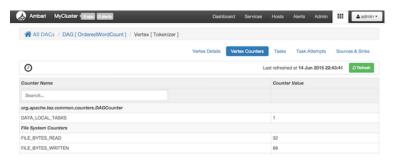
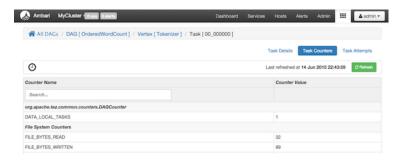



Figure 4.11. Tez View Task-Level Counters Tab

Monitoring Task Progress for Jobs

The Tez View shows task progress by increasing the count of completed tasks and total tasks. This enables you to identify the tasks that might be "hung" and to understand more about long-running tasks.

5. Using the Pig View

Apache Pig is a scripting platform for processing and analyzing large data sets. Pig was designed to perform extract-transform-load (ETL) operations, raw data research, and iterative data processing. The **Pig View** provides a web-based interface to compose, edit, and submit Pig scripts, download results, and view logs and the history of job submissions.

This chapter explains:

- Configuring Your Cluster for the Pig View
- Creating the Pig View Instance
- Using the Pig View

5.1. Configuring Your Cluster for Pig View

Configuring HDFS for Pig

You must set up an HDFS proxy user for the Ambari daemon account. For example, if ambari-server daemon is running as root, you set up a proxy user for root in core-site by clicking HDFS > Configs > Advanced > Custom core-site > Add Property, and then add the following key-value pairs in the Add Property dialog box:

```
hadoop.proxyuser.root.hosts=*
```

Click Add to add the property to core-site.

You must also set up an HDFS proxy user for WebHCat. For example, if your WebHCat server is running as hcat, you set up a proxy user for hcat in core-site. In the same HDFS advanced core-site settings pane, click **Add Property**, add the following key-value pairs to the Add Property dialog box, and then click **Add**to add them to core-site:

```
hadoop.proxyuser.hcat.groups=*
hadoop.proxyuser.hcat.hosts=*
```

Ambari views use the doAs option for commands. This option enables the Ambari process user to impersonate the Ambari logged-in user. To avoid receiving permissions errors for job submissions and file save operations, you must create HDFS users for all Ambari users that use the views.

Configuring WebHCat for Pig

You must set up a WebHCat proxy user for the Ambari daemon account. For example, if ambari-server daemon is running as root, you set up a proxy user for root in webhcat-site by clicking **Hive > Configs > Advanced > Custom webhcat-site > Add Property**, add the following key-value pairs in the Add Property dialog box, and then click **Add** to add them to webhcat-site:

```
webhcat.proxyuser.root.groups=*
webhcat.proxyuser.root.hosts=*
```

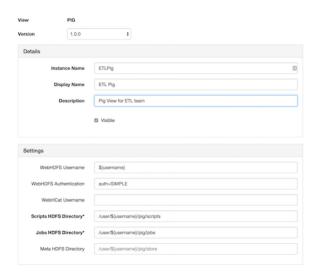

Note

If Ambari Server is running as a non-root user, such as 'ambari', and you are planning on using Ambari Views, the following properties in **Services > HDFS > Configs > Advanced core-site** must be added:

```
hadoop.proxyuser.ambari.groups=*
hadoop.proxyuser.ambari.hosts=*
```

See the Ambari Security Guide for more information about How to Configure Ambari Server for Non-Root.

Note


This view stores user metadata in HDFS. By default, the location in HDFS for this metadata is /user/<user name of logged in user>. Since many users leverage the 'admin' account for getting started with Ambari, the /user/admin folder needs to be created. To do so execute the following commands as the hdfs user:

```
su - hdfs
hadoop fs -mkdir /user/admin
hadoop fs -chown admin:hadoop /user/admin
```

5.2. Creating the Pig View Instance

- 1. Browse to the Ambari Administration interface.
- 2. Click Views, expand the Pig View, and click Create Instance.
- 3. On the Create Instance page, select **Version**. If multiple Pig View jars are present, choose one.
- 4. Enter the Details and Settings. The Instance Name appears in the URI, the Display Name appears in the Views drop-down list, and the Description helps multiple users identify the view:

Figure 5.1. Pig View Details and Settings

5. Scroll down, and enter the Cluster Configuration information, which tells the Pig View how to access resources in the cluster. For a cluster that is deployed and managed by Ambari, select **Local Ambari Managed Cluster**:

Figure 5.2. Pig View Cluster Configuration

6. Click **Save**, give Permissions to the appropriate users and groups, and click **Go to instance** at the top of the page to go to the view instance.

5.2.1. Getting Correct Configuration Values for Manually- Deployed Clusters

If you have manually deployed your cluster, you must enter cluster configuration values in the Pig View Create Instance page. The following table explains where you can find cluster configuration settings in Ambari.

Table 5.1. Finding Cluster Configuration Values for the Pig View in Ambari

Property	Value
Scripts HDFS Directory*	/user/\${username}/pig/scripts
Jobs HDFS Directory*	/user/\${username}/pig/jobs
WebHDFS FileSystem URI*	Click HDFS > Configs > Advanced hdfs-site > dfs.namenode.http-address. When you enter the value in the view definition, pre-pend "webhdfs://" to the value you find in the advanced HDFS configuration settings. For example, webhdfs://c6401.ambari.apache.org:50070
WebHCat Hostname*	Click Hive > Configs > Advanced > WebHCat Server > WebHCat Server host to view the hostname. For example, c6402.ambari.apache.org
WebHCat Port*	Click Hive > Configs > Advanced > Advanced webhcat-site > templeton.port to view the port number. For example, 50111

For NameNode High Availability

The following values must be entered for primary and secondary NameNodes:

Table 5.2. Pig View Settings for NameNode High Availability

Property	Value
First NameNode RPC Address or Second NameNode RPC Address	Select the primary or secondary NameNode to view settings from that host in the cluster. See how to get the NameNode RPC address [18]. When you enter the value in the view definition, pre-pend "http://" to the value you find in the advanced hdfs-site settings. For example, http://c6401.ambari.apache.org:8020
First NameNode HTTP (WebHDFS) Address or Second NameNode HTTP (WebHDFS) Address	Click HDFS > Configs > Advanced > Advanced hdfs-site > dfs.namenode.http-address. When you enter the value in the view definition, pre-pend "http://" to the value you find in the advanced hdfs-site settings. For example, http://c6401.ambari.apache.org:50070

To get First NameNode RPC Address values:

 Navigate to the HDFS service page in Ambari that contains links to individual NameNodes. Click NameNode (primary) or SNameNode (secondary) to view the host page:

Figure 5.3. HDFS Service Page in Ambari

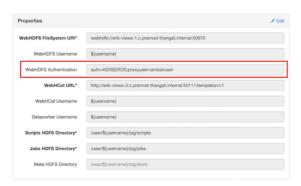
- 2. On the host page, click **Configs > Advanced**.
- 3. Enter "rpc" in the Filter search well at the top right corner of the page or navigate to the Advanced hdfs-site settings to find the dfs.namenode.rpc-address value that you can enter into the Pig View definition. Here is an example of using the Filter to locate a value:

Figure 5.4. Using the Filter to Search Advanced hdfs-site Settings

5.2.2. User Permissions for Pig Views

After saving the Pig View instance definition, grant permission on the view for the set of users who can use the view:

Views / My Pig View Go to Instance Delete Instance PIG View 1.0.0 Version Details ✓ Edit Instance Name MyPigView Display Name My Pig View Description description W Visible Permissions Permission Grant permission to these users Grant permission to these groups Use Settings ✓ Edit


Figure 5.5. Granting User Permissions to Pig Views

5.2.3. Kerberos Setup for Pig Views

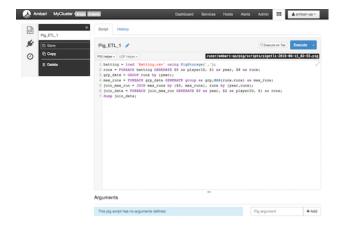
To set up basic Kerberos for views, see "Set Up Kerberos for Ambari Server" in the Ambari Security Guide. After you have set up basic Kerberos for the Pig View, Pig requires that WebHDFS Authentication be set to auth=KERBEROS;proxyuser=<ambari-user-principal>

For example, see the following figure:

Figure 5.6. Kerberos Settings for Pig Views

5.3. Using the Pig View

Use the Pig View to:


- Write Pig scripts
- Execute Pig scripts
- Add user-defined functions (UDFs) to Pig scripts
- View the history of all Pig scripts run by the current user

5.3.1. Writing Pig Scripts

Navigate to the Pig View instance Scripts page, and click **New Script** in the upper right corner of the window. Name the script in the New Script dialog box, click **Create**, and enter your script into the editor. After you have written the script, you can use the execute button on the upper right to run it. Check the box that is adjacent to the execute button to use Tez instead of the default MapReduce engine.

The following figure shows a running Pig script:

Figure 5.7. Pig Script Running in the Pig View

5.3.2. Viewing Pig Script Execution History

The History tab shows the history of Pig scripts run by the current user. A particular script in history can be clicked to open it in a new Script tab to view its details:

Figure 5.8. Pig View Script History Tab

5.3.3. User-Defined Functions (UDFs) Tab

UDFs can be added to Pig scripts by clicking **Create UDF** in the upper right corner of the UDFs window. In the Create UDF dialog box, point to a UDF in the system by specifying the name and path:

Figure 5.9. Pig View UDFs Tab

6. Using the Capacity Scheduler View

The Yarn Capacity Scheduler allows for multiple tenants in an HDP cluster to share compute resources according to configurable workload management policies.

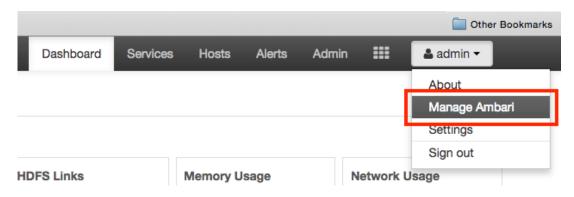
The Capacity Scheduler View is designed to help hadoop operators configure these policies for YARN. In the View, operators can create hierarchical queues and tune configurations for each queue to define an overall workload management policy for the cluster.

In this section:

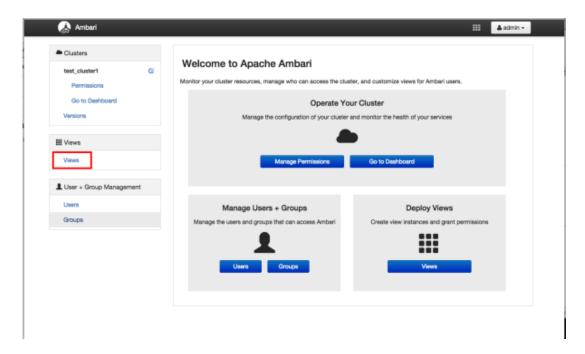
- Configuring your Cluster for the Capacity Scheduler View
- Creating a Capacity Scheduler View Instance
- Using the Capacity Scheduler View
- Troubleshooting

6.1. Configuring your Cluster for the Capacity Scheduler View

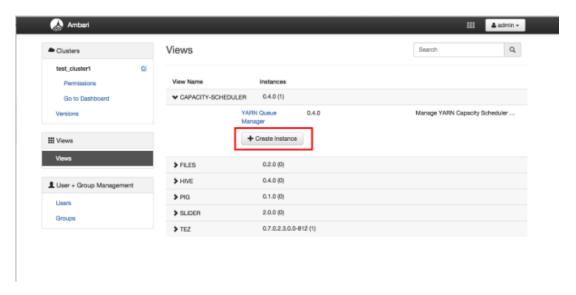
The Capacity Scheduler View requires that the cluster is managed by Ambari – the view utilizes the Ambari Server API.


6.2. Creating a Capacity Scheduler View Instance

When you deploy a cluster using Ambari, a Capacity Scheduler View instance is automatically created. If you do not need to reconfigure the Ambari-created cluster, proceed to the next section, Using the Capacity Scheduler View.


If you have deployed your cluster manually, or if you need to re-configure the Ambari-created Capacity Scheduler View, you can use the information in this section to create and configure a view instance.

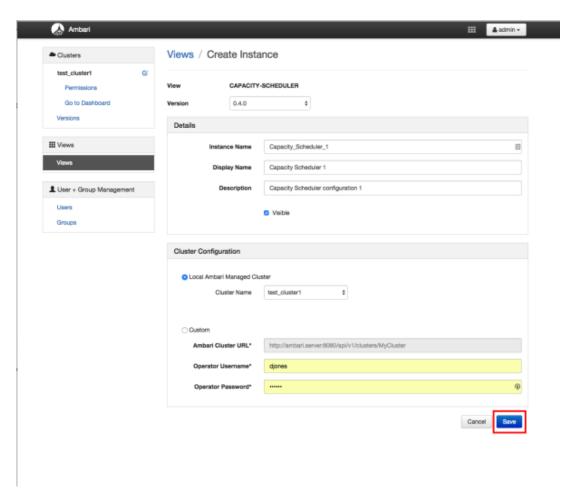
Use the following steps to set up a Capacity Scheduler view instance.


1. Select admin > Manage Ambari in the Ambari Web top menu.

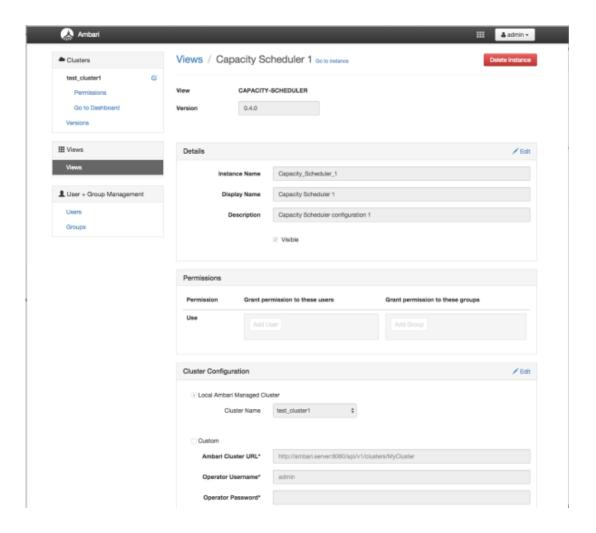
2. On the Manage Ambari page, click **Views**.

3. On the Views page, click CAPACITY-SCHEDULER, then click Create Instance.

4. In the Details box on the Create Instance page, type in an instance name, display name, and a description for the view.

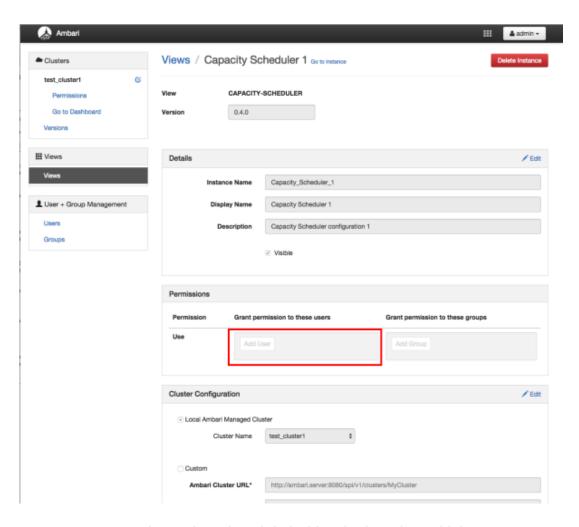


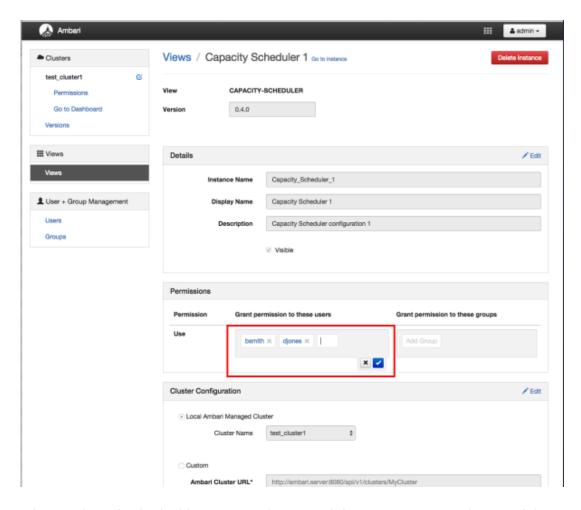
Note


The instance name cannot contain spaces or special characters.

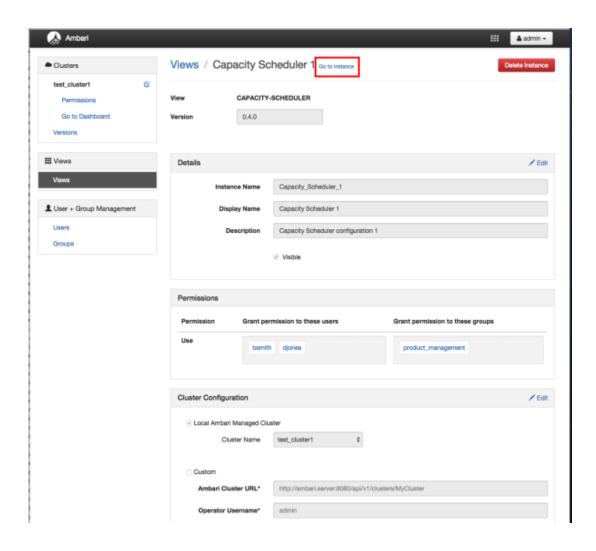
- 5. In the Cluster Configuration box on the Create Instance page, configure the view to communicate with the HDP cluster.
 - For HDP clusters that are local (managed by the local Ambari Server), select the **Local Ambari Managed Cluster** option, then select the local cluster name.

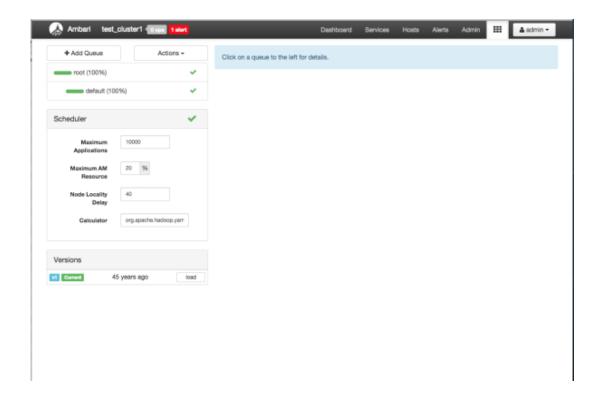
- To configure the view to work with HDP clusters that are remote (not part of this Ambari Server instance), select the **Custom** option, then specify the remote Ambari cluster API URL and the Ambari cluster user name and password.
- 6. Click **Save** at the bottom of the page.


7. The Capacity Scheduler View instance is created, and the configuration page for the instance appears.


6.2.1. User Permissions for Capacity Scheduler Views

Use the following procedure to add users and groups to a Capacity Scheduler view instance.


1. On the Capacity Scheduler view instance configuration page, click the box labeled Add User in the Permissions box.


2. Enter user names in the Use box, then click the blue check mark to add the users. You can use the same method to add groups in the Add Group box.

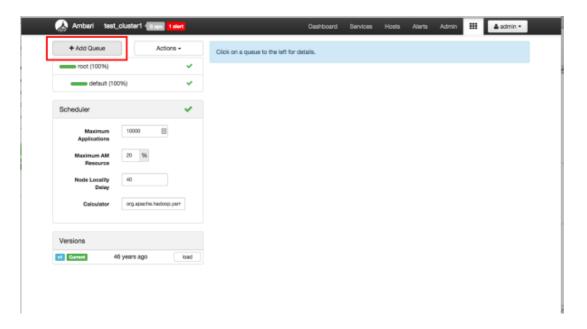
3. After you have finished adding users and groups, click **Go to instance** at the top of the page to open the Capacity Scheduler view instance.

4. The Capacity Scheduler view instance page appears.

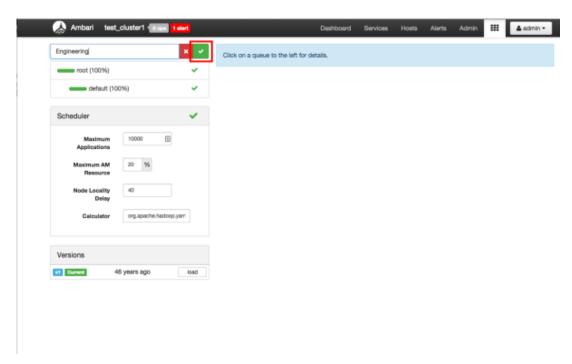
6.3. Using the Capacity Scheduler View

The Capacity Scheduler View is designed to help hadoop operators configure workload management policies for YARN. In the Capacity Scheduler View, operators can create hierarchical queues and tune configurations for each queue to define an overall workload management policy for the cluster.

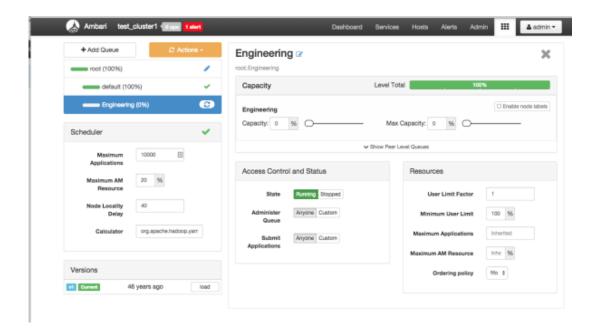
6.3.1. Setting up Queues

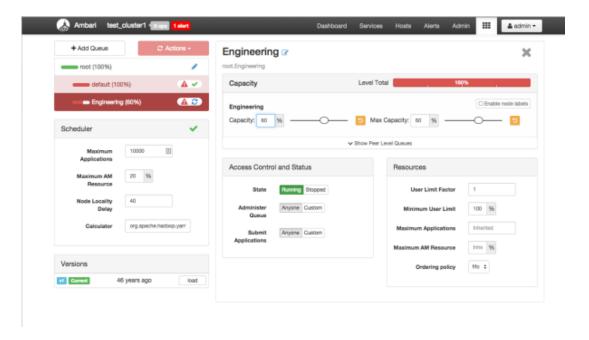

Use the following steps to set up Capacity Scheduler queues on a view instance.

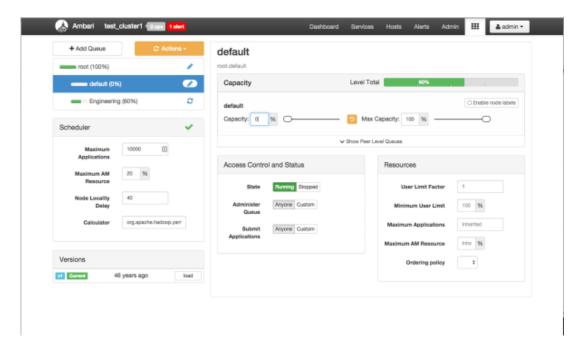
1. On the Capacity Scheduler view instance configuration page, click **Add Queue**. The queue will be added under the top level, or "root" queue. A "default" queue already exists under the root queue.

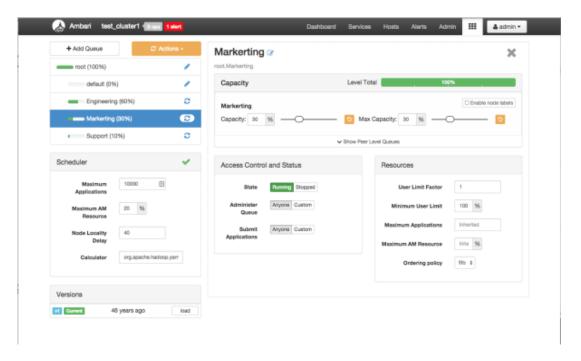


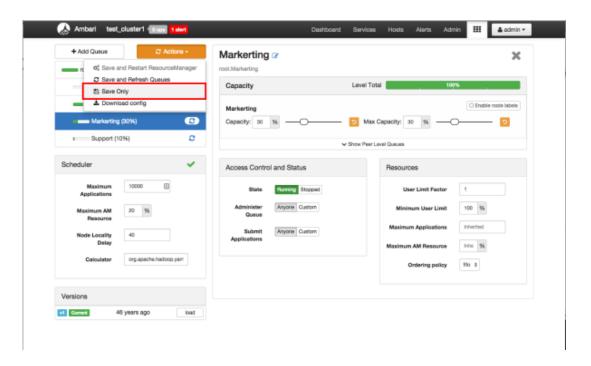
Note

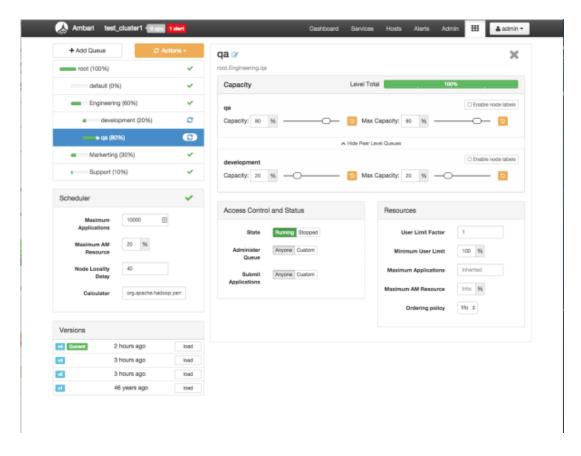

To return to a previously created Capacity Scheduler view instance, click **Views** on the Manage Ambari page, then click **CAPACITY-SCHEDULER**. Click the applicable Capacity Scheduler view instance, then click **Go to instance** at the top of the page.


2. Type in a name for the new queue, then click the green check mark to create the queue. In the following example, we're creating the "Engineering" queue.


3. The "Engineering" queue is added, and its configuration page appears.


4. The sum of queue capacities at any level in the Capacity Scheduler configuration must total 100%. Here the default queue is already set to 100%. Therefore, if we try to set the "Engineering" queue capacity to 60%, error messages appear warning that the total at this level is 160%.


5. If we click the "default" queue and set its capacity to 0%, the error messages no longer appear, and the Level Total bar at the top of the page lists the total queue capacity at this level as 60%.


6. To add more queues at the root level, click the **root** queue, then click **Add Queue**. In the following example, we have added a "Support" queue set to 10% of the level capacity, and a "Marketing" queue set to 30%. The root-level queue capacities now total 100%.

7. To save your configuration, click **Actions > Save Only**. On the **Notes** pop-up, enter an optional description of your changes, then click **Save**. Each version is retained and listed in the Versions box.

8. To build a queue hierarchy, click a top level queue, then click Add Queue. In the following example, the "qa" and "development" queues have been added under the "Engineering" queue.

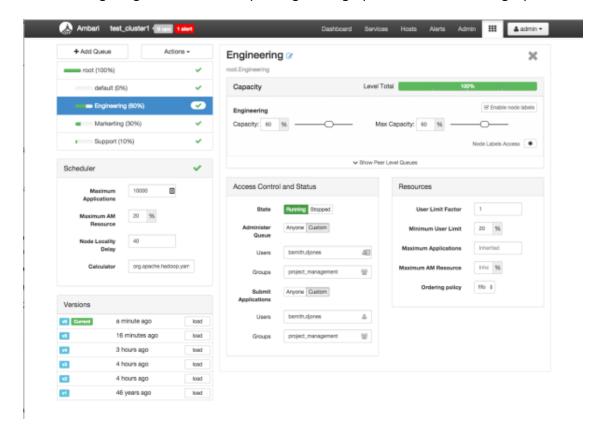
6.3.2. Configuring Queues

To configure a queue, click the queue name, then set the following queue parameters:

Note

Hold the cursor over a parameter name to display a description of the parameter.

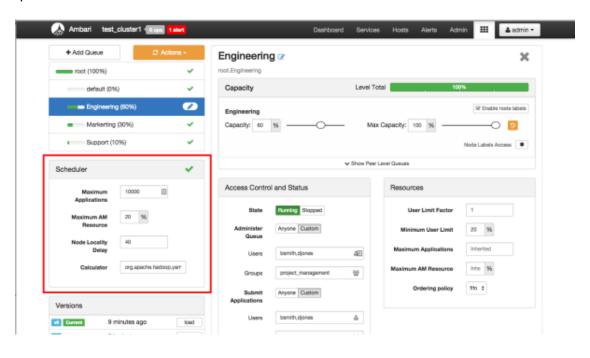
Capacity


- Capacity The percentage of cluster resources available to the queue. For a sub-queue, the percentage of parent queue resources.
- Max Capacity The maximum percentage of cluster resources available to the queue.
 Setting this value tends to restrict elasticity, as the queue will be unable to utilize idle cluster resources beyond this setting.
- Enable Node Labels Select this check box to enable node labels for the queue.

Access Control and Status

- State Running is the default state. Setting this to Stopped lets you gracefully drain the queue of jobs (for example, before deleting a queue).
- Administer Queue Click **Custom** to restrict administration of the queue to specific users and groups.
- Submit Applications Click **Custom** to restrict the ability to run applications in the queue to specific users and groups.

Resources

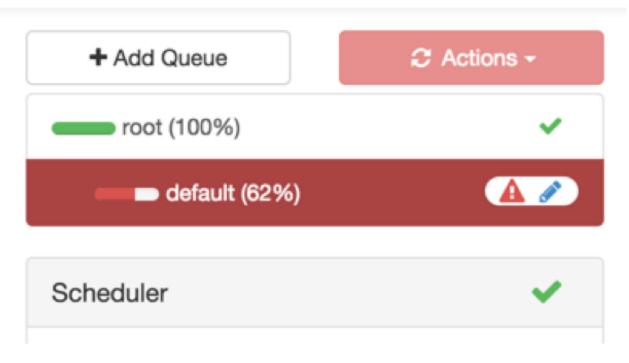

- User Limit Factor The default value of "1" means that any single user in the queue can
 at maximum only occupy the queue's configured capacity. This prevents users in a single
 queue from monopolizing resources across all queues in a cluster. Setting the value to
 "2" would restrict the queue's users to twice the queue's configured capacity. Setting it
 to a value of 0.5 would restrict any user from using resources beyond half of the queue
 capacity.
- Minimum User Limit This property can be used to set the minimum percentage of resources allocated to each queue user. For example, to enable equal sharing of the queue capacity among five users, you would set this property to 20%.
- Maximum Applications This setting enables you to override the Scheduler Maximum Applications setting (described in Configuring Cluster Scheduler Settings). The default setting is Inherited (no override).
- Maximum AM Resource This setting enables you to override the Scheduler Maximum AM Resource setting (described in Configuring Cluster Scheduler Settings). The default setting is Inherited (no override).
- Ordering Policy You can specify FIFO (First In, First Out) or fair (Fair Scheduler: applications get a fair share of capacity regardless of the order in which they were submitted).

The following image shows the example "Engineering" queue with these settings specified:

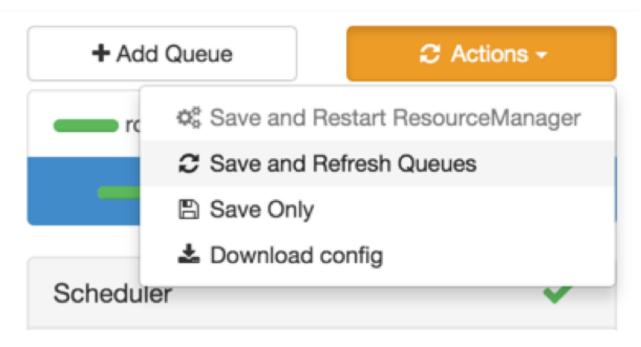
6.3.3. Configuring Cluster Scheduler Settings

You can use the Scheduler box to set global capacity scheduler settings that apply to all queues.

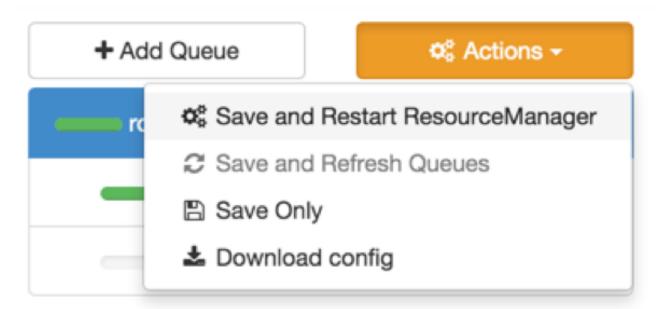
The following Scheduler global parameters are available:


- Maximum Applications To avoid system-thrash due to an unmanageable load caused either by malicious users, or accidentally the Capacity Scheduler enables you to place a static, configurable limit on the total number of concurrently active (both running and pending) applications at any one time. This property is used to set this limit, with a default value of 10,000.
- Maximum AM Resource The limit for running applications in any specific queue is a
 fraction of this total limit, proportional to its capacity. This is a hard limit, which means
 that once this limit is reached for a queue, any new applications submitted to that queue
 will be rejected, and clients will have to wait and retry later.
- Node Locality Delay The number of missed scheduling cycles after which the scheduler attempts to schedule rack-local containers.
- Calculator The method by which the scheduler calculates resource capacity across resource types.

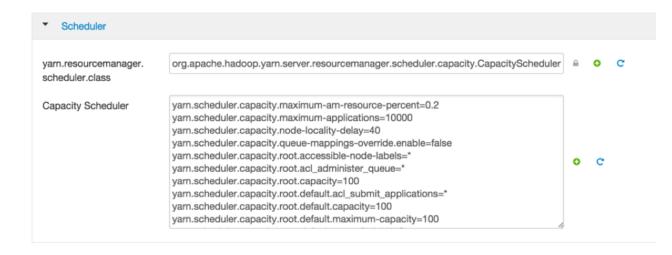
6.3.4. Applying the Configuration Changes


You can use the Actions menu to apply configuration changes made to the queue hierarchy.

Depending on the configuration changes made, the Actions menu will guide you to the options available to apply the changes.


For changes that are not valid and cannot be applied, the **Actions** button will turn red, and the menu will not appear.

For configuration changes that can be applied dynamically (without restarting the YARN ResourceManager), the Actions Menu will guide you to **Save and Refresh Queues**.


For configuration changes that require a restart of the YARN ResourceManager, the Actions Menu will guide you to **Save and Restart ResourceManager**.

6.4. Troubleshooting

If you encounter an issue where the configurations cannot be applied from the View, you should go to the local Ambari Server instance managing the cluster and directly edit the Capacity Scheduler configuration from the YARN configuration page.

In the local Ambari instance, navigate to **Services > YARN**, then select the **Configs** tab. On the **Advanced** tab, expand the Scheduler section.

Here you will be able to edit the underlying configurations for the Capacity Scheduler and fix any issues you may encounter.

7. Using the Hive View

Hive is a data warehouse infrastructure built on top of Hadoop. It provides tools to enable data ETL, a mechanism to put structures on the data, and the capability to query and analyze large data sets that are stored in Hadoop. The **Hive View** is designed to help you author, execute, understand, and debug Hive queries.

This chapter explains:

- Configuring Your Cluster for the Hive View
- Creating the Hive View Instance
- Using the Hive View

Important

The Tez View integrates with the Hive View. Please install the Tez View when you install the Hive View. See Using the Tez View

7.1. Configuring Your Cluster for Hive View

Configuring HDFS for Hive

You need to set up an HDFS proxy user for the Ambari daemon account. For example, if ambari-server daemon is running as root, you set up a proxy user for root in core-site.xml by clicking HDFS > Configs > Custom core-site > Add Property. In the Add Property dialog box, you add the following keys and values:

Кеу	Value
hadoop.proxyuser.root.groups	*
hadoop.proxyuser.root.hosts	*

Ambari views use the doAs option for commands. This option enables the Ambari process user to impersonate the Ambari logged-in user. To avoid receiving permissions errors for job submissions and file save operations, you must create HDFS users for all Ambari users that use the views.

Note

If Ambari Server is running as a non-root user, such as 'ambari', and you are planning on using Ambari Views, the following properties in **Services > HDFS > Configs > Advanced core-site** must be added:

```
hadoop.proxyuser.ambari.groups=*
hadoop.proxyuser.ambari.hosts=*
```

See the Ambari Security Guide for more information about How to Configure Ambari Server for Non-Root.

Note

This view stores user metadata in HDFS. By default, the location in HDFS for this metadata is /user/<user name of logged in user>. Since many users leverage the 'admin' account for getting started with Ambari, the /user/admin folder needs to be created. To do so execute the following commands as the hdfs user:

```
su - hdfs
hadoop fs -mkdir /user/admin
hadoop fs -chown admin:hadoop /user/admin
```

7.2. Creating the Hive View Instance

- 1. Browse to the Ambari Administration interface.
- 2. Click Views, expand the Hive View, and click Create Instance.
- 3. On the Create Instance page, select the **Version**. If multiple Hive View jars are present, choose one.
- 4. Enter the Details and Settings. The Instance Name appears in the URI, the Display Name appears in the Views drop-down list, and the Description helps multiple users identify the view:

Figure 7.1. Hive View Details and Settings

5. Scroll down, and enter the Cluster Configuration information, which tells the Hive View how to access resources in the cluster. For a cluster that is deployed and managed by Ambari, select Local Ambari Managed Cluster:

Cluster Configuration

* Local Ambari Managed Cluster
Cluster Name MyCluster

Cluster Name MyCluster

* Custom

HiveServer2 Host* 127.0.0.1

HiveServer2 Thrift port* 10000

WebHDFS FileSystem URI* webhdfs://namenode:50070

Logical name of the NamnNode cluster
List of NameNodes
First NameNode RPC
Address

Second NameNode RPC
Address

First NameNode RPC
Address

First NameNode HTTP
(WebHDFS) Address

First NameNode HTTP
(WebHDFS) Address

Second NameNode HTTP
(WebHDFS) Address

Fallover Proxy Provider

YARN Application Timeline
Server URL*

YARN ResourceManager
URL*

Figure 7.2. Hive View Cluster Configuration

6. Click **Save**, give Permissions to the appropriate users and groups, and go to the view instance.

7.2.1. Getting Correct Configuration Values for Manually-Deployed Clusters

If you have manually deployed your cluster, you must enter cluster configuration values in the Hive View Create Instance page. The following table explains where you can find cluster configuration settings in Ambari.

Table 7.1. Finding Cluster Configuration Values for the Hive View in Ambari

Property	Value
Hive Authentication	auth=NONE;user=\${username}
Scripts HDFS Directory*	/user/\${username}/hive/scripts
Jobs HDFS Directory*	/user/\${username}/hive/jobs
HiveServer2 Host*	Click Hive > Summary > HiveServer2 to view the host name. For example, c6401.ambari.apache.org
HiveServer2 Thrift port*	Click Hive > Configs > Advanced > General > HiveServer2 Port . For example, 10000
WebHDFS FileSystem URI*	Click HDFS > Configs > Advanced > Advanced hdfs-site > dfs.namenode.http-address. When you enter the value in the view definition, pre-pend "webhdfs://" to the value you find in the advanced HDFS configuration settings. For example, webhdfs://c6401.ambari.apache.org:50070
YARN Application Timeline Server URL*	Click YARN > Configs > Advanced > Application Timeline Server > yarn.timeline-service.webapp.address.

Property	Value
	When you enter the value in the view definition, prepend "http://" to the value you find in the YARN advanced configuration settings. For example, http://c6401.ambari.apache.org:8188
YARN ResourceManager URL*	Click YARN > Configs > Advanced > Advanced yarn- site > yarn.resourcemanager.webapp.address. When you enter the value in the view definition, pre- pend "http://" to the value you find in the YARN advanced configuration settings. For example, http:// c6401.ambari.apache.org:8088

For NameNode High Availability

The following values must be entered for primary and secondary NameNodes:

Table 7.2. Hive View Settings for NameNode High Availability

Property	Value
First NameNode RPC Address or Second NameNode RPC Address	Select the primary or secondary NameNode to view settings from that host in the cluster. See how to get the NameNode RPC address [43]. When you enter the value in the view definition, pre-pend "http://" to the value you find in the advanced hdfs-site settings. For example, http://c6401.ambari.apache.org:8020
First NameNode HTTP (WebHDFS) Address or Second NameNode HTTP (WebHDFS) Address	Click HDFS > Configs > Advanced > Advanced hdfs-site > dfs.namenode.http-address. When you enter the value in the view definition, pre-pend "http://" to the value you find in the advanced hdfs-site settings. For example, http://c6401.ambari.apache.org:50070

To get First NameNode RPC Address values:

 Navigate to the HDFS service page in Ambari that contains links to individual NameNodes. Click NameNode (primary) or SNameNode (secondary) to view the host page:

Figure 7.3. HDFS Service Page in Ambari

- 2. On the host page, click **Configs > Advanced**.
- 3. Enter "rpc" in the Filter search well at the top right corner of the page or navigate to the Advanced hdfs-site settings to find the dfs.namenode.rpc-address value that you can enter into the Hive View definition. Here is an example of using the Filter to locate a value:

Figure 7.4. Using the Filter to Search Advanced hdfs-site Settings

7.2.2. User Permissions for Hive Views

After saving the Hive View instance definition, grant permission on the view for the set of users who can use the view:

Figure 7.5. Granting User Permissions to Hive Views

7.2.3. Kerberos Setup for Hive Views

To set up basic Kerberos for views, see "Set Up Kerberos for Ambari Server" in the Ambari Security Guide. After you have set up basic Kerberos for the Hive View, Hive requires the following additional settings:

Table 7.3. Kerberos Settings for Hive Views

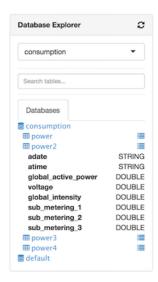
Property	Value
WebHDFS Authentication	auth=KERBEROS;proxyuser= <ambari-principal></ambari-principal>
Hive Authentication	KERBEROS and the principal is set to the same principal that is specified in hive-site.xml for hive.server2.authentication.kerberos.principal.For example, see the following figure.

Figure 7.6. Hive View Kerberos Configuration Example

7.3. Using the Hive View

Use the Hive View to:

- Browse databases
- Write and execute queries
- Manage query execution jobs and history

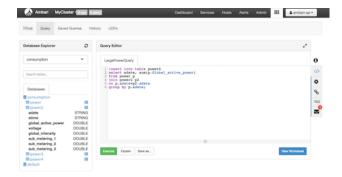

7.3.1. Query Tab

Click the **Query** tab to browse database tables and columns and to build, execute, and debug queries.

Database Explorer

The Database Explorer enables you to view all databases and tables in Hive that you have permissions to view. It is designed to navigate a large number of databases, tables, and columns:

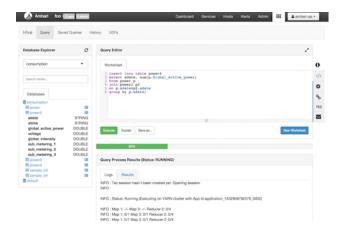
Figure 7.7. Hive View Database Explorer


Features of Database Explorer:

- Click the refresh icon in the top right to view tables that were created since the Hive View session began.
- Select a database from the drop-down list. All queries in the current tab are then run against the selected database. You can also edit the drop-down list to enable substring searches over a large number of databases.
- Use the Search tables and Search columns fields to search when you have a large number of tables and columns.
- Browse the Databases tab to view all of the databases, tables, and columns. This is useful when you are authoring queries. The icon to the right of a table enables you to see sample data within that table.

Query Editor

You can author and execute queries in the Query Editor:


Figure 7.8. Query Editor

Features and Behavior of Query Editor

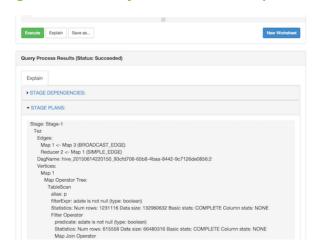
- All queries contained in a Worksheet tab execute sequentially, and they run in the same session. Running all queries in one pass requires handling the output of multiple select statements and is not supported in the 1.0 version.
- To run a specific query, highlight it, and click **Execute**.
- When the first query is executed in a Worksheet, a Tez session is opened.
- Click Save as to save your query.
- Double-click the **Worksheet** tab to rename the query, click **OK**, and then **Save as** to save the query with the new name.
- Click **New Worksheet** to open a new worksheet tab. Queries executed from the new worksheet tab will execute in a different session. Queries from different worksheets can execute in parallel.
- Press CTRL + space to autocomplete query statements.
- Click the double arrow icon in the upper right corner of the Query Editor to expand the Worksheet area and cover Database Explorer. Click the icon again to collapse the Worksheet and make Database Explorer available again.
- Click the icon at the bottom of the Worksheet window and drag it down to expand the authoring space.
- Query results and logs display below the query when it is executed.

Figure 7.9. Query Results and Logs in Hive View Query Editor

Query Editor Settings

Click the gear icon on the right margin of the worksheet to access settings for the Query Editor. Then click **Add**, select a setting parameter from the drop-down list, and then select a value for the parameter. Query Editor settings are configured per worksheet.

To save settings as default settings so they are applied each time that a new worksheet is opened, click **Save Default Settings** in the upper right corner of the settings window.


Click **SQL** to the right of the Worksheet window to exit settings and return to the Query Editor authoring pane.

Text Explain and Visual Explain

There are two options that help you understand how your queries are executed. One is a textual explanation of your query and the other form explains the query visually as a diagram. In future releases, column lineage will be added.

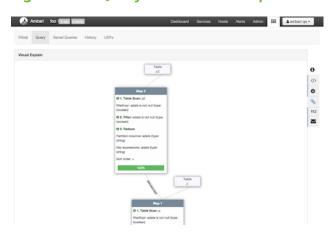

The **Explain** button in the lower left corner of the Worksheet window launches a textual explanation:

Figure 7.10. Query Editor Textual Explain Feature

To launch the Visual Explain diagram, click the link icon to the right of the Worksheet window. If the query is running, Visual Explain shows the query execution progress per vertex:


Figure 7.11. Query Editor Visual Explain Feature

Using the Tez View to Debug Query Execution

Query execution can be debugged using the embedded Tez view. To access the Tez view, click **TEZ** in the toolbar on the right of the Worksheet window:

Figure 7.12. Tez View Query Debugging Option

When a query fails, the Status field displays **FAILED** and there is a link to Failed Tasks and the error displays on the first page. Click **Download data** to get the data for the task. For further details on debugging, see the Tez View.

Errors and Alerts


Errors and alerts can be viewed by clicking the envelope icon in the toolbar to the right of the Worksheet window. When the icon is clicked, all the messages are shown with a oneline summary per message:

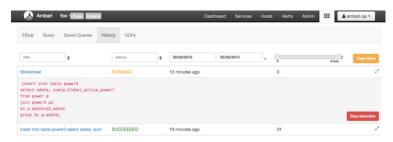
Figure 7.13. Query Editor Error Message Summary Window

If you want to view details of the errors, expand the summary by clicking it. The details text can be copied into a bug report:

Figure 7.14. Query Editor Error Message Details Window

7.3.2. Saved Queries Tab

The Saved Queries tab shows all the queries that have been saved by the current user. Click the gear icon to the right of the query list to view the history of a query or to delete it:


Figure 7.15. Saved Queries Tab

7.3.3. History Tab

You can view the history of all jobs run by the current user in the History tab. It pulls history from the Application Timeline Server database. All queries for which logs are present in that database are displayed here. This means that regardless of the source of the query, (CLI, JDBC/ODBC, Hive View) it will appear here on the History tab. Queries that have not been assigned a name, such as those created in the Hive View, appear as query text. For example, see the insert statement that was submitted by CLI in the following image:

Figure 7.16. History Tab

For queries that are submitted from the Hive View, a Stop Execution button is available to enable you to end a currently running query. When you select a query by clicking the title in the first column, that query appears on a new sub-tab in the Query tab where it can be analyzed and debugged.

7.3.4. UDF Tab

User-defined functions (UDFs) can be added to queries by pointing to a JAR file on HDFS, which contains the UDF definition. After the UDF is added here, an Insert UDF button appears in the Query Editor that enables you to add the UDF to your query:

Figure 7.17. UDF Tab

8. Using the Slider View

Slider is a framework for deploying and managing long-running applications on YARN. When applications are packaged using Slider for YARN, the **Slider View** can be used to help deploy and manage those applications from Ambari.

8.1. Deploying the Slider View

Refer to the Ambari Administration guide for general information about Managing Views.

- 1. From the Ambari Administration interface, browse to the Views section.
- 2. Click to expand the **Slider** view and click **Create Instance**.
- 3. Enter the instance name, the display name and description.
- 4. Enter the configuration properties for your cluster.

Property	Description	Example
Ambari Server URL (required)	The Ambari REST URL to the cluster resource.	http://ambari.server:8080/api/v1/ clusters/MyCluster
Ambari Server Username (required)	The username to connect to Ambari. Must be an Ambari Admin user.	admin
Ambari Server Password (required)	The password for the Ambari user.	password
Slider User	The user to deploy slider applications as. By default, the applications will be deployed as the "yarn" service account user. To use the current logged-in Ambari user, enter \${username}.	joe.user or \${username}
Kerberos Principal	The Kerberos principal for Ambari views. This principal identifies the process in which the view runs. Only required if your cluster is configured for Kerberos. Be sure to configure the view principal as a proxy user in core-site.	view-principal@EXAMPLE.CO
Kerberos Keytab	The Kerberos keytab for Ambari views. Only required if your cluster is configured for Kerberos.	/path/to/keytab/view- principal.headless.keytab

5. Save the view.

9. Using the Files View

The Files View provides a convenient way to access HDFS through a web-based interface.

- Configuring Your Cluster for Files View
- Creating the Files View Instance

9.1. Configuring Your Cluster for Files View

Configuring HDFS for Files View

You need to set up an HDFS proxy user for the Ambari daemon account. For example, if ambari-server daemon is running as root, you set up a proxy user for root in core-site by adding and changing properties in HDFS > Configs > Custom core-site:

```
hadoop.proxyuser.root.groups=*
hadoop.proxyuser.root.hosts=*
```

Restart the required components as indicated by Ambari. If you want to add multiple views, you can restart services once, after making changes for all views.

Note

If Ambari Server is running as a non-root user, such as 'ambari', and you are planning on using Ambari Views, the following properties in **Services > HDFS > Configs > Advanced core-site** must be added:

```
hadoop.proxyuser.ambari.groups=*
hadoop.proxyuser.ambari.hosts=*
```

See the Ambari Security Guide for more information about How to Configure Ambari Server for Non-Root.

Note

This view stores user metadata in HDFS. By default, the location in HDFS for this metadata is /user/<user name of logged in user>. Since many users leverage the 'admin' account for getting started with Ambari, the /user/admin folder needs to be created. To do so execute the following commands as the hdfs user:

```
su - hdfs
hadoop fs -mkdir /user/admin
hadoop fs -chown admin:hadoop /user/admin
```

9.2. Creating the Files View Instance

- 1. Browse to the Ambari Administration interface.
- Click Views, expand the Files View, and click Create Instance.

3. Enter the following information:

Property	Value
Instance Name	FILES_1
Display Name	MyFiles
Description	Browse HDFS files and directories.
WebHDFS FileSystem URI	webhdfs:// <hdfs> configs > Advanced hdfs-site > dfs.namenode.http-address></hdfs>
	For example: webhdfs://c6401.ambari.apache.org:50070
WebHDFS Username	\${username}

4. Click **Save**, give Permissions to the appropriate users and groups, and go to the view instance.