Hortonworks Data Platform

HDFS Administration Guide

(July 21, 2015)

http://docs.cloudera.com

Hortonworks Data Platform July 21, 2015

Hortonworks Data Platform: HDFS Administration Guide
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 4.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform July 21, 2015

Table of Contents

1. HDFS AdMINIiStrationoooiiimeiiiiiiii et e e e e e e e e e e e e eeennaans 1
1.1. Configuring ACLS ON HDFSuuiiiiiiiiii e 1
1.2. Using CLI Commands to Create and List ACLSccoeeviiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 1
1.3. ACL EXAMPIES ...ttt ettt ettt ettt e e e e et e e et et et e e e e e e e eeeeas 2
1.4. ACLS 0N HDFS FEATUIES ...t e e 6
1.5. Use Cases for ACLS 0N HDFScooiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee ettt 7
2. ArCHIVAl STOTAE ... s 11
2.1, INEFOAUCTION e 11
2.2. HDFS StOrage TYPES ...euniiiieiiiiieie et r s 11
2.3. Storage Policies: Hot, Warm, and Coldccccoeeriiiiiiiiiiiiieeeeeeecee e 11
2.4. Configuring Archival StOrageccoovviiiiiiiiiiiiii e 12
3. Centralized Cache Management in HDFS ... 15
B T @ Y=Y oY 15
3.2. Caching USE CASES ...ceeiiiiiiiiiiiiiiiiiiiiieieieietee ettt ettt et e ee et teteeeeeteeeeeeeeeeaeaaaeeaaaaaeaaaeaes 15
3.3. Caching Archit@CtUIeuuuiiiiiiiiiiiiiiiiei et nenenenenes 15
3.4. Caching TermMiNOIOGYccceiiiiiiiiiiiiiiiiiiiiiieieieee ettt e e e e e e e e e e e e eeeeeas 16
3.5. Configuring Centralized Caching ..., 17
3.6. Using Cache Pools and Dir€CtiVESccooioiiiiii s 19
4. Configuring HDFS COMPIESSIONcceeiiiiiieiieeeeee et 23
5. Configuring Rack Awareness ONn HDPcooiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee et 25
5.1. Create a Rack TOPOIOGY SCrPtcooeiieeeeeee e 25
5.2. Add the Topology Script Property to core-site.xml ..., 26
5.3. Restart HDFS and MapReAUCEuiiiiiiiiiiiiiiei e e 26
5.4. Verify RACK AWAIENESSuuuuuuieieiiiiiiiiiiitiiiiieteaaeaaeabeaaesbsesbaesesbabsbneaenenenenee 26
6. CUStOMIZING HDFS ..o 28
6.1. Customize the HDFS HOME Dir€CtOrYuuuuuuuuueuuueiereieneienneeneneeneesneennseenennnnes 28
6.2. Set the Size of the NameNode Edits Directorycccccvuumemmmememiminiiiniiiinenens 28
7. HAadOOP AICRIVES ... se s snnnnne 29
2% I 118 o Yo 18 Tt [o TP RPN 29
7.2. Hadoop Archive COMPONENTScceiiiiiiiiiiiiiie et 29
7.3. Creating @ Hadoop Archive ..o 30
7.4. Looking Up Files in Hadoop Archives ... 31
7.5. Hadoop Archives and MapRedUCEcouuuuiiiiiiiiiiiiiiie e 32
8. JMX Metrics APIs for HDFS DA@MONScceiiiiiiiiiiiiiee ittt 33
9. Memory as Storage (Technical PreVieW) ... 34
9.1, INErOAUCHION . 34
9.2. HDFS StOrage TYPESuniiiiiiiii it 34
9.3. The LAZY_PERSIST Memory Storage POlICYueueuiiimiiiiiiiiiiiiiiiiiiiniiiiiiiiieens 35
9.4. Configuring MemOory as StOrageccoouuuuuumminii e 35
10. Running DataNoOdes as NON-ROOTuuuuuuuuuuiiiiiiiiiiiiiiiiieiiieneeeneseaeeesenensnessnenensnenenes 38
0 R 1o e o (1 T [o TSRS 38
10.2. Configuring DataNode SASLcooiiiiiiiii 38
11. Short Circuit Local Reads On HDFSoouuuiiiiiiii e 41
117, Prer@QUISITES ..eeereieeieie e e eiiteie e e e e et e e e e e e ettt s e e e e e e e e e s e e e e e e e eeennnnnaens 41
11.2. Configuring Short-Circuit Local Reads on HDFSccoovviiiiiiiiiiiiiiiiiiiinineneen. 41
11.3. Short-Circuit Local Read Properties in hdfs-site.xmlcco 41
12. WebHDFS Administrator GUIAEccooiiiieiiiiiiiie et 44
13. HDFS "Data at Rest" ENCryptionccooiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeteeeeeeeeeeeeee et 46

Hortonworks Data Platform July 21, 2015

13.1. HDFS ENCryption OVEIVIEWc.uuiiiiiiiiiiiiiiiie ettt e e e e 46
13.2. Configuring and Starting the Ranger Key Management Service (Ranger
Y) TP PPPPPP 48
13.3. Configuring and Using HDFS Data at Rest Encryptioncccooeeviiiiiiiieiennnnn. 48
13.3.1. Prepare the ENVIrONMENTccovvuiiiiiieiiiiiiiie e 48
13.3.2. Create an ENcryption KeYcoii i 50
13.3.3. Create an ENcryption ZoNecoooiiuiiiiiiiiiiee e 52
13.3.4. Copy Files from/to an ENcryption ZONeueueuemememememeneneiinininenenens 53
13.3.5. Read and Write Files from/to an Encryption Zoneccccuvceiieivenneenen. 54
13.3.6. Delete Files from an Encryption Zoneccoooieiiiiiiieieieiececeeeeeeeee 56
13.4. Configuring HDP Services for HDFS ENCryptionccooerviiiciiniieeeeceiiiceee e 56
L2 I o 1Y RPN 57
1304.2. HBASE oo 59
L2 T o o o] o TSP 60
13.4.4. MapReduce 0N YARN ... e e e e e e eeees 61
13.4.5. OO0ZIE ..ttt ettt e e e e e e eee e e aaeeeeee 61
13.4.6. WEDHDFSoiiiiiiiiiiie e 62
13.5. Appendix: Creating an HDFS Admin USErccooiviiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeee 64
14. Backing Up HDFS IMetadatacouuuuiiiii it 66
14.1. Introduction to HDFS Metadata Files and Directoriesccoeeeeeieeeieeeeeeennn. 66
14.1.1. Files and Dir€CtOri@scceeeeeieiieiiee e 66
14.1.2. HDFS COMMANASuiuiiiiii e 71
14.2. Backing Up HDFS Metadatac..uuuiiiiiiiiieciiiccee e 72
14.2.1. Get Ready to Backup the HDFS Metadataceeeveeeeeeieeieinniniiiiiinnans 72
14.2.2. Perform a Backup the HDFS Metadataccooevvveeeiiiiiniiiiiicccein, 73

Hortonworks Data Platform

July 21, 2015

List of Figures

13.1. HDFS Encryption Components

Hortonworks Data Platform July 21, 2015

List of Tables

1.1.
1.2.
2.1.
2.2.
2.3.
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

Y@ @ o 4o o T3S EPPPE 1
getfacl OPLIONS ... 2
Setting StOrage PONICY ... 13
Getting STorage POlICY ...oooooeieeee e 13
HDFS Mover ArgUMENTS ...t e 13
Cache Pool Add OPLIONSceeeiiiiiiiiiiie e 19
Cache POOl MOdify OPLiONSevriiiiiiiiiieiieeiieeeiteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeenenne 20
Cache POOI REMOVE OPTIONSuuuuuiuiiiiiiiiiiiiiiiiiitiieiatatatetababseaeaeseeeeesssssssensnsnsssnnnennes 20
Cache POOIs List OPLIONSoiiiiiiiiiiiiiiie et e e e e e 20
Cache Pool Help OPLioNScoooeiiieeeeeeee e 21
Cache Pool Add Directive OPLiONScooeiiiiiiiiiiee e e 21
Cache Pools Remove Directive OPtiONScccoeiiiiiiiiiiiiiiiieiiiiiieieeeeeeeeeeeee e 21
Cache Pool Remove Directives OPtioNSceiiiieiiiiiiiiiee e 22
Cache Pools List Directives OPLioNnSccoeeeiiiiiiiiee e 22

Vi

Hortonworks Data Platform July 21, 2015

1. HDFS Administration

This guide describes how to use Access Control Lists (ACLs) on the Hadoop Distributed
File System (HDFS). ACLs extend the HDFS permission model to support more granular file
access based on arbitrary combinations of users and groups.

1.1. Configuring ACLs on HDFS

Only one property needs to be specified in the hdfs-site.xml file in order to enable ACLs on
HDFS:

» dfs.namenode.acls.enabled

Set this property to "true" to enable support for ACLs. ACLs are disabled by default.
When ACLs are disabled, the NameNode rejects all attempts to set an ACL.

Example:
<property>
<nane>df s. nanenode. acl s. enabl ed</ nane>

<val ue>t rue</ val ue>
</ property>

1.2. Using CLI Commands to Create and List ACLs

Two new sub-commands are added to FsShell: set f acl and get f acl . These commands
are modeled after the same Linux shell commands, but fewer flags are implemented.
Support for additional flags may be added later if required.

¢ setfacl
Sets ACLs for files and directories.

Example:
-setfacl [-bkR] {-ml-x} <acl_spec> <pat h>

-setfacl --set <acl _spec> <pat h>
Options:

Table 1.1. ACL Options

Option Description

-b Remove all entries, but retain the base ACL entries. The
entries for User, Group, and Others are retained for
compatbility with Permission Bits.

-k Remove the default ACL.
-R Apply operations to all files and directories recursively.
-m Modify the ACL. New entires are added to the ACL, and

existing entries are retained.

-X Remove the specified ACL entires. All other ACL entries
are retained.

Hortonworks Data Platform

July 21, 2015

Option

Description

--set

Fully replace the ACL and discard all existing entries. The
acl_spec must include entries for User, Group, and Others
for compatibility with Permission Bits.

<acl _spec>

A comma-separated list of ACL entries.

It; path>

The path to the file or directory to modify.

Examples:

hdfs dfs -setfacl -muser:hadoop:rw /file

hdfs dfs -setfacl -x user:hadoop /file
hdfs dfs -setfacl -b /file

hdfs dfs -setfacl -k /dir

hdfs dfs -setfacl --set user::rw,user:hadoop:rw,group::r--,other::r-- /

file

hdfs dfs -setfacl -R -muser: hadoop:r-x /dir
hdfs dfs -setfacl -mdefault:user:hadoop:r-x /dir

Exit Code:

Returns 0 on success and non-zero on error.

* getfacl

Displays the ACLs of files and directories. If a directory has a default ACL, get f acl also

displays the default ACL.

Usage:

-getfacl [-R] <path>

Options:

Table 1.2. getfacl Options

Option Description

-R List the ACLs of all files and directories recursively.
<pat h> The path to the file or directory to list.
Examples:

hdfs dfs -getfacl /file
hdfs dfs -getfacl -R /dir

Exit Code:

Returns 0 on success and non-zero on error.

1.3. ACL Examples

Before the implementation of Access Control Lists (ACLs), the HDFS permission model was
equivalent to traditional UNIX Permission Bits. In this model, permissions for each file or
directory are managed by a set of three distinct user classes: Owner, Group, and Others.
There are three permissions for each user class: Read, Write, and Execute. Thus, for any file
system object, its permissions can be encoded in 3*3=9 bits. When a user attempts to access

Hortonworks Data Platform July 21, 2015

a file system object, HDFS enforces permissions according to the most specific user class
applicable to that user. If the user is the owner, HDFS checks the Owner class permissions.
If the user is not the owner, but is a member of the file system object’s group, HDFS checks
the Group class permissions. Otherwise, HDFS checks the Others class permissions.

This model can sufficiently address a large number of security requirements. For example,
consider a sales department that would like a single user — Bruce, the department manager
—to control all modifications to sales data. Other members of the sales department need to
view the data, but must not be allowed to modify it. Everyone else in the company (outside
of the sales department) must not be allowed to view the data. This requirement can be
implemented by running chmod 640 on the file, with the following outcome:

STWr----- 1 brucesal es22K Nov 18 10: 55 sal es-data

Only Bruce can modify the file, only members of the sales group can read the file, and no
one else can access the file in any way.

Suppose that new requirements arise. The sales department has grown, and it is no longer
feasible for Bruce to control all modifications to the file. The new requirement is that Bruce,
Diana, and Clark are allowed to make modifications. Unfortunately, there is no way for
Permission Bits to address this requirement, because there can be only one owner and

one group, and the group is already used to implement the read-only requirement for the
sales team. A typical workaround is to set the file owner to a synthetic user account, such
as "salesmgr," and allow Bruce, Diana, and Clark to use the "salesmgr" account via sudo or
similar impersonation mechanisms. The drawback with this workaround is that it forces
complexity onto end-users, requiring them to use different accounts for different actions.

Now suppose that in addition to the sales staff, all executives in the company need to be
able to read the sales data. This is another requirement that cannot be expressed with
Permission Bits, because there is only one group, and it is already used by sales. A typical
workaround is to set the file's group to a new synthetic group, such as "salesandexecs,"
and add all users of "sales" and all users of "execs" to that group. The drawback with this
workaround is that it requires administrators to create and manage additional users and
groups.

Based on the preceding examples, you can see that it can be awkward to use Permission
Bits to address permission requirements that differ from the natural organizational
hierarchy of users and groups. The advantage of using ACLs is that it enables you to
address these requirements more naturally, in that for any file system object, multiple users
and multiple groups can have different sets of permissions.

Example 1: Granting Access to Another Named Group

To address one of the issues raised in the preceding section, we will set an ACL that grants
Read access to sales data to members of the "execs" group.

» Set the ACL:

> hdfs dfs -setfacl -m group:execs:r-- /sales-data

* Run getfacl to check the results:

> hdfs dfs -getfacl /sal es-data
file: /sal es-data
owner: bruce

Hortonworks Data Platform July 21, 2015

group: sales
user::rw
group: :r--
gr oup: exXecs: r- -
mask: :r--
other::---

* If we run the "Is" command, we see that the listed permissions have been appended with
a plus symbol (+) to indicate the presence of an ACL. The plus symbol is appended to the
permissions of any file or directory that has an ACL.

> hdfs dfs -Is /sal es-data
Found 1 itens
SrTWr----- + 3 bruce sales 0 2014-03-04 16: 31 /sal es-data

The new ACL entry is added to the existing permissions defined by the Permission Bits. As
the file owner, Bruce has full control. Members of either the "sales" group or the "execs"
group have Read access. All others do not have access.

Example 2: Using a Default ACL for Automatic Application to New Children

In addition to an ACL enforced during permission checks, there is also the separate concept
of a default ACL. A default ACL can only be applied to a directory — not to a file. Default
ACLs have no direct effect on permission checks for existing child files and directories,

but instead define the ACL that new child files and directories will receive when they are
created.

Suppose we have a "monthly-sales-data" directory that is further subdivided into separate
directories for each month. We will set a default ACL to guarantee that members of the
"execs" group automatically get access to new subdirectories as they get created each
month.

* Set a default ACL on the parent directory:

> hdfs dfs -setfacl -m default:group: execs:r-x /nonthly-sal es-data

* Make subdirectories:

> hdfs dfs -nkdir /nonthly-sal es-data/JAN
> hdfs dfs -nkdir /nonthly-sal es-data/ FEB

* Verify that HDFS has automatically applied the default ACL to the subdirectories:

> hdfs dfs -getfacl -R /nonthly-sal es-data
file: /nonthly-sal es-data

owner: bruce

group: sales

user: :rwx
group: :r-x
other::---

def aul t: user: :rwx
defaul t:group::r-x

def aul t: gr oup: execs: r-x
defaul t: mask: :r-x
default:other::---

file: /nonthly-sal es-datal/ FEB
owner: bruce

Hortonworks Data Platform

group: sales
user: :rwx

group: :r-x

gr oup: execs: r-x
mask: : r-x
other::---

def aul t: user::rwx
def aul t: group::r-x
def aul t : group: execs: r-x
def aul t: mask: :r-x
default:other::---

file: /nonthly-sal es-data/JAN
owner: bruce

group: sales

user: :rwx

group: :r-x

gr oup: execs: r-x

mask: :r-x

other::---

def aul t: user: :rwx
defaul t:group::r-x

def aul t: gr oup: execs: r-x
defaul t: mask: :r-x
default:other::---

Example 3: Blocking Access to a Sub-Tree for a Specific User

Suppose there is a need to immediately block access to an entire sub-tree for a specific
user. Applying a named user ACL entry to the root of that sub-tree is the fastest way to
accomplish this without accidentally revoking permissions for other users.

* Add an ACL entry to block user Diana's access to "monthly-sales-data":

> hdfs dfs -setfacl -muser:diana:--- /nonthly-sal es-data

* Run getfacl to check the results:

> hdfs dfs -getfacl /nonthly-sal es-data
file: /nonthly-sal es-data
owner: bruce

group: sales

USer: :rwx

user: di ana: - - -

group: : r-x

mask: : r-x

other::---
defaul t: user::rwx
defaul t: group::r-x

def aul t : group: execs: r-x
defaul t: mask: :r-x

defaul t:other::---

It is important to keep in mind the order of evaluation for ACL entries when a user
attempts to access a file system object:

¢ If the user is the file owner, the Owner Permission Bits are enforced.

* Else, if the user has a named user ACL entry, those permissions are enforced.

July 21, 2015

Hortonworks Data Platform July 21, 2015

* Else, if the user is a member of the file’s group or any named group in an ACL entry,
then the union of permissions for all matching entries are enforced. (The user may be a
member of multiple groups.)

* If none of the above are applicable, the Other Permission Bits are enforced.

In this example, the named user ACL entry accomplished our goal because the user is not
the file owner and the named user entry takes precedence over all other entries.

1.4. ACLS on HDFS Features

POSIX ACL Implementation

ACLs on HDFS have been implemented with the POSIX ACL model. If you have ever used
POSIX ACLs on a Linux file system, the HDFS ACLs work the same way.

Compatibility and Enforcement

HDFS can associate an optional ACL with any file or directory. All HDFS operations

that enforce permissions expressed with Permission Bits must also enforce any ACL
that is defined for the file or directory. Any existing logic that bypasses Permission

Bits enforcement also bypasses ACLs. This includes the HDFS super-user and setting
dfs.permissions to "false" in the configuration.

Access Through Multiple User-Facing Endpoints

HDFS supports operations for setting and getting the ACL associated with a file or
directory. These operations are accessible through multiple user-facing endpoints. These
endpoints include the FsShell CLI, programmatic manipulation through the FileSystem and
FileContext classes, WebHDFS, and NFS.

User Feedback: CLI Indicator for ACLs

The plus symbol (+) is appended to the listed permissions of any file or directory with an
associated ACL. To view, use thel s -1 command.

Backward-Compatibility

The implementation of ACLs is backward-compatible with existing usage of Permission

Bits. Changes applied via Permission Bits (chnod) are also visible as changes in the ACL.
Likewise, changes applied to ACL entries for the base user classes (Owner, Group, and
Others) are also visible as changes in the Permission Bits. Permission Bit and ACL operations
manipulate a shared model, and the Permission Bit operations can be considered a subset
of the ACL operations.

Low Overhead

The addition of ACLs will not cause a detrimental impact to the consumption of system
resources in deployments that choose not to use ACLs. This includes CPU, memory, disk,
and network bandwidth.

Using ACLs does impact NameNode performance. It is therefore recommended that you
use Permission Bits, if adequate, before using ACLs.

Hortonworks Data Platform July 21, 2015

ACL Entry Limits

The number of entries in a single ACL is capped at a maximum of 32. Attempts to add ACL
entries over the maximum will fail with a user-facing error. This is done for two reasons: to
simplify management, and to limit resource consumption. ACLs with a very high number
of entries tend to become difficult to understand, and may indicate that the requirements
are better addressed by defining additional groups or users. ACLs with a very high number
of entries also require more memory and storage, and take longer to evaluate on each
permission check. The number 32 is consistent with the maximum number of ACL entries
enforced by the "ext" family of file systems.

Symlinks

Symlinks do not have ACLs of their own. The ACL of a symlink is always seen as the default
permissions (777 in Permission Bits). Operations that modify the ACL of a symlink instead
modify the ACL of the symlink’s target.

Snapshots

Within a snapshot, all ACLs are frozen at the moment that the snapshot was created. ACL
changes in the parent of the snapshot are not applied to the snapshot.

Tooling

Tooling that propagates Permission Bits will not propagate ACLs. This includes thecp -p
shell command and di stcp - p.

1.5. Use Cases for ACLs on HDFS

ACLs on HDFS supports the following use cases:
Multiple Users

In this use case, multiple users require Read access to a file. None of the users are the owner
of the file. The users are not members of a common group, so it is impossible to use group
Permission Bits.

This use case can be addressed by setting an access ACL containing multiple named user
entries:

ACLs on HDFS supports the foll owi ng use cases:
Multiple Groups

In this use case, multiple groups require Read and Write access to a file. There is no group
containing all of the group members, so it is impossible to use group Permission Bits.

This use case can be addressed by setting an access ACL containing multiple named group
entries:

group: sal es: rw
gr oup: exXecs: r w

Hive Partitioned Tables

Hortonworks Data Platform July 21, 2015

In this use case, Hive contains a partitioned table of sales data. The partition key is
"country". Hive persists partitioned tables using a separate subdirectory for each distinct
value of the partition key, so the file system structure in HDFS looks like this:

user
“-- hive

“-- war ehouse
“-- sales

| -- country=CN
| -- country=GB
“-- country=US

All of these files belong to the "salesadmin" group. Members of this group have Read and
Write access to all files. Separate country groups can run Hive queries that only read data
for a specific country, such as "sales_CN", "sales_GB", and "sales_US". These groups do not
have Write access.

This use case can be addressed by setting an access ACL on each subdirectory containing an
owning group entry and a named group entry:

count r y=CN
group: : rwx
group: sal es_CN: r-x

count ry=GB
group: : rwx
group: sal es_GB:r-x

count ry=US
group: : rwx
group: sal es_US: r-Xx

Note that the functionality of the owning group ACL entry (the group entry with no name)
is equivalent to setting Permission Bits.

2 Important

Storage-based authorization in Hive does not currently consider the ACL
permissions in HDFS. Rather, it verifies access using the traditional POSIX
permissions model.

Default ACLs

In this use case, a file system administrator or sub-tree owner would like to define an access
policy that will be applied to the entire sub-tree. This access policy must apply not only to
the current set of files and directories, but also to any new files and directories that are
added later.

This use case can be addressed by setting a default ACL on the directory. The default ACL
can contain any arbitrary combination of entries. For example:

def aul t: user: :rwx
def aul t: user: bruce: rw
defaul t:user:diana:r--
def aul t: user: cl ark: rw
defaul t: group::r--

Hortonworks Data Platform July 21, 2015

defaul t: group: sal es: :rw
def aul t: group: execs: : rw
default:others::---

It is important to note that the default ACL gets copied from the directory to newly
created child files and directories at time of creation of the child file or directory. If you
change the default ACL on a directory, that will have no effect on the ACL of the files and
subdirectories that already exist within the directory. Default ACLs are never considered
during permission enforcement. They are only used to define the ACL that new files and
subdirectories will receive automatically when they are created.

Minimal ACL/Permissions Only
HDFS ACLs support deployments that may want to use only Permission Bits and not ACLs

with named user and group entries. Permission Bits are equivalent to a minimal ACL
containing only 3 entries. For example:

user::rw
group: :r--
others::---

Block Access to a Sub-Tree for a Specific User

In this use case, a deeply nested file system sub-tree was created as world-readable,
followed by a subsequent requirement to block access for a specific user to all files in that
sub-tree.

This use case can be addressed by setting an ACL on the root of the sub-tree with a named
user entry that strips all access from the user.

For this file system structure:

dirl
T--dir2
-- dir3
|-- filel
|-- file2
T-- file3

Setting the following ACL on "dir2" blocks access for Bruce to "dir3,""file1,""file2," and "file3":

user: bruce: - --

More specifically, the removal of execute permissions on "dir2" means that Bruce cannot
access "dir2", and therefore cannot see any of its children. This also means that access is
blocked automatically for any new files added under "dir2". If a "file4" is created under
"dir3", Bruce will not be able to access it.

ACLs with Sticky Bit

In this use case, multiple named users or named groups require full access to a shared
directory, such as "/tmp". However, Write and Execute permissions on the directory also
give users the ability to delete or rename any files in the directory, even files created by
other users. Users must be restricted so that they are only allowed to delete or rename files
that they created.

Hortonworks Data Platform July 21, 2015

This use case can be addressed by combining an ACL with the sticky bit. The sticky bit is
existing functionality that currently works with Permission Bits. It will continue to work as
expected in combination with ACLs.

10

Hortonworks Data Platform July 21, 2015

2. Archival Storage

This section describes how to use storage policies to assign files and directories to archival
storage types.

2.1. Introduction

Archival storage lets you store data on physical media with high storage density and low
processing resources.

Implementing archival storage involves the following steps:

1. Shut down the DataNode.

2. Assign the ARCHIVE storage type to DataNodes designed for archival storage.
3. Set HOT, WARM, or COLD storage policies on HDFS files and directories.

4. Restart the DataNode.

If you update a storage policy setting on a file or directory, you must use the HDFS mover
data migration tool to actually move blocks as specified by the new storage policy.

2.2. HDFS Storage Types

HDFS storage types can be used to assign data to different types of physical storage media.
The following storage types are available:

* DISK - Disk drive storage (default storage type)

» ARCHIVE - Archival storage (high storage density, low processing resources)
* SSD - Solid State Drive

* RAM_DISK — DataNode Memory

If no storage type is assigned, DISK is used as the default storage type.

2.3. Storage Policies: Hot, Warm, and Cold

You can store data on DISK or ARCHIVE storage types using the following preconfigured
storage policies:

* HOT- Used for both storage and compute. Data that is being used for processing will
stay in this policy. When a block is HOT, all replicas are stored on DISK. There is no
fallback storage for creation, and ARCHIVE is used for replication fallback storage.

* WARM - Partially HOT and partially COLD. When a block is WARM, the first replica is
stored on DISK, and the remaining replicas are stored on ARCHIVE. The fallback storage
for both creation and replication is DISK, or ARCHIVE if DISK is unavailable.

11

Hortonworks Data Platform

July 21, 2015

* COLD - Used only for storage, with limited compute. Data that is no longer being used,
or data that needs to be archived, is moved from HOT storage to COLD storage. When
a block is COLD, all replicas are stored on ARCHIVE, and there is no fallback storage for

creation or replication.

The following table summarizes these replication policies:

N

Currently, storage policies cannot be edited.

2.4. Configuring Archival Storage

Use the following steps to configure archival storage:

Policy ID Policy Name Replica Block Fallback storage for | Fallback storage for
Placement (for n creation replication
replicas)
12 HOT (default) Disk: n <none> ARCHIVE
8 WARM Disk: 1, ARCHIVE: n-1 | DISK, ARCHIVE DISK, ARCHIVE
4 COLD ARCHIVE: n <none> <none>
Note

1. Shut down the DataNode, using the applicable commands in the "Controlling HDP
Services Manually" section of the HDP Reference Guide.

2. Assign the ARCHIVE Storage Type to the DataNode.

You can use the df s. dat anode. dat a. di r property in the/ et ¢/ hadoop/ conf/
hdf s-si te. xm file to assign the ARCHIVE storage type to a DataNode.

The df s. dat anode. dat a. di r property determines where on the local filesystem a

DataNode should store its blocks.

If you specify a comma-delimited list of directories, data will be stored in all named
directories, typically on different devices. Directories that do not exist are ignored.
You can specify that each directory resides on a different type of storage: DISK, SSD,
ARCHIVE, or RAM_DISK.

To specify a DataNode as DISK storage, specify [DISK] and a local file system path. For

example:

<property>
<nane>df s. dat anode. dat a. di r </ nane>
<val ue>[DI SK]file:///grid/1/tnp/data_trunk</val ue>
</ property>

To specify a DataNode as ARCHIVE storage, insert [ARCHIVE] at the beginning of the
local file system path. For example:

<property>
<nane>df s. dat anode. dat a. di r </ nane>
<val ue>[ARCHI VE] file:///grid/1/tnp/data_trunk</val ue>
</ property>

12

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform

3. Set or Get Storage Policies. To set a storage policy on a file or a directory:

hdf s df sadmi n -set St oragePol i cy <pat h> <pol i cyName>

Arguments:

Table 2.1. Setting Storage Policy

July 21, 2015

Argument Description

<path The path to a directory or file.
<policyName> The name of the storage policy.
Example:

hdf s df sadmi n -set St oragePol icy /coldl COLD

To get the storage policy of a file or a directory:

hdf s df sadm n - get St or agePol i cy <pat h>

Argument:

Table 2.2. Getting Storage Policy

Argument Description
<path> The path to a directory or file.
Example:

hdf s df sadmi n - get St or agePol i cy /col d1

4. Start the DataNode, using the applicable commands in the "Controlling HDP Services
Manually" section of Installing HDP Manually.

5. Use Mover to Apply Storage Policies:

When you update a storage policy setting on a file or directory, the new policy is not
automatically enforced. You must use the HDFS nover data migration tool to actually
move blocks as specified by the new storage policy.

The nover data migration tool scans the specified files in HDFS and checks to see if
the block placement satisfies the storage policy. For the blocks that violate the storage
policy, it moves the replicas to a different storage type in order to fulfill the storage
policy requirements.

Command:

hdfs nmover [-p <files/dirs> | -f <local file name>]

Arguments:

Table 2.3. HDFS Mover Arguments

Arguments Description
-p <files/dirs> Specify a space-separated list of HDFS files/directories to
migrate.

13

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_installing_manually_book/index.html

Hortonworks Data Platform July 21, 2015

Arguments Description

Specify a local file containing a list of HDFS files/

-f <local file>
directories to migrate.

3 Note
Note that when both - p and - f options are omitted, the default path is the
root directory.

14

Hortonworks Data Platform July 21, 2015

3. Centralized Cache Management in
HDFS

This section provides instructions on setting up and using centralized cache management
in HDFS. Centralized cache management enables you to specify paths to directories or
files that will be cached by HDFS, thereby improving performance for applications that
repeatedly access the same data.

3.1. Overview

Centralized cache management in HDFS is an explicit caching mechanism that enables you
to specify paths to directories or files that will be cached by HDFS. The NameNode will
communicate with DataNodes that have the desired blocks available on disk, and instruct
the DataNodes to cache the blocks in off-heap caches.

Centralized cache management in HDFS offers many significant advantages:

* Explicit pinning prevents frequently used data from being evicted from memory. This
is particularly important when the size of the working set exceeds the size of main
memory, which is common for many HDFS workloads.

» Because DataNode caches are managed by the NameNode, applications can query the
set of cached block locations when making task placement decisions. Co-locating a task
with a cached block replica improves read performance.

* When a block has been cached by a DataNode, clients can use a new, more efficient,
zero-copy read API. Since checksum verification of cached data is done once by the
DataNode, clients can incur essentially zero overhead when using this new API.

* Centralized caching can improve overall cluster memory utilization. When relying on the
operating system buffer cache on each DataNode, repeated reads of a block will result
in all n replicas of the block being pulled into the buffer cache. With centralized cache
management, you can explicitly pin only mof the n replicas, thereby saving n- mmemory.

3.2. Caching Use Cases

Centralized cache management is useful for:

* Files that are accessed repeatedly — For example, a small fact table in Hive that is often
used for joins is a good candidate for caching. Conversely, caching the input of a once-
yearly reporting query is probably less useful, since the historical data might only be read
once.

* Mixed workloads with performance SLAs — Caching the working set of a high priority
workload ensures that it does not compete with low priority workloads for disk 1/O.

3.3. Caching Architecture

The following figure illustrates the centralized cached management architecture.

15

Hortonworks Data Platform July 21, 2015

User asks NN to
cache a path (e. NN translates path

o L to a set of blocks,
g. via Hive DDL) adds to pending
caching queue

User NameNode

DN heartbeats contain

Cache commands cache block report

piggybacked on
heartbeat response

DFSClients can be
scheduled for DFSClient
memory locality

In this architecture, the NameNode is responsible for coordinating all of the DataNode
off-heap caches in the cluster. The NameNode periodically receives a cache report from
each DataNode. The cache report describes all of the blocks cached on the DataNode. The
NameNode manages DataNode caches by piggy-backing cache and uncache commands on
the DataNode heartbeat.

The NameNode queries its set of Cache Directives to determine which paths should be
cached. Cache Directives are persistently stored in the fsimage and edit logs, and can be
added, removed, and modified via Java and command-line APIs. The NameNode also stores
a set of Cache Pools, which are administrative entities used to group Cache Directives
together for resource management, and to enforce permissions.

The NameNode periodically re-scans the namespace and active Cache Directives to
determine which blocks need to be cached or uncached, and assigns caching work to
DataNodes. Re-scans can also be triggered by user actions such as adding or removing a
Cache Directive or removing a Cache Pool.

Cache blocks that are under construction, corrupt, or otherwise incomplete are not cached.
If a Cache Directive covers a symlink, the symlink target is not cached.

Currently, caching can only be applied to directories and files.

3.4. Caching Terminology

Cache Directive

A Cache Directive defines the path that will be cached. Paths can point either directories or
files. Directories are cached non-recursively, meaning only files in the first-level listing of the
directory will be cached.

Cache Directives also specify additional parameters, such as the cache replication factor
and expiration time. The replication factor specifies the number of block replicas to cache.
If multiple Cache Directives refer to the same file, the maximum cache replication factor is
applied.

The expiration time is specified on the command line as a time-to-live (TTL), which
represents a relative expiration time in the future. After a Cache Directive expires, it is no
longer taken into consideration by the NameNode when making caching decisions.

Cache Pool

16

Hortonworks Data Platform July 21, 2015

A Cache Pool is an administrative entity used to manage groups of Cache Directives. Cache
Pools have UNIX-like permissions that restrict which users and groups have access to the
pool. Write permissions allow users to add and remove Cache Directives to the pool. Read
permissions allow users to list the Cache Directives in a pool, as well as additional metadata.
Execute permissions are unused.

Cache Pools are also used for resource management. Cache Pools can enforce a maximum
memory limit, which restricts the aggregate number of bytes that can be cached by
directives in the pool. Normally, the sum of the pool limits will approximately equal the
amount of aggregate memory reserved for HDFS caching on the cluster. Cache Pools also
track a number of statistics to help cluster users track what is currently cached, and to
determine what else should be cached.

Cache Pools can also enforce a maximum time-to-live. This restricts the maximum expiration
time of directives being added to the pool.

3.5. Configuring Centralized Caching

Native Libraries

In order to lock block files into memory, the DataNode relies on native JNI code found
inl i bhadoop. so. Be sure to enable JNI if you are using HDFS centralized cache
management.

Configuration Properties

Configuration properties for centralized caching are specified in the hdf s- si t e. xm file.
Required Properties

Currently, only one property is required:

» df s. dat anode. nmax. | ocked. menory This property determines the maximum
amount of memory (in bytes) that a DataNode will use for caching. The "locked-in-
memory size" ulimit (ul i M t -1) of the DataNode user also needs to be increased to
exceed this parameter (for more details, see the following section on). When setting this
value, remember that you will need space in memory for other things as well, such as the
DataNode and application JVM heaps, and the operating system page cache. Example:

<property>
<nane>df s. dat anode. max. | ocked. menor y</ nanme>
<val ue>268435456</ val ue>

</ property>

Optional Properties
The following properties are not required, but can be specified for tuning.

» df s. nanenode. pat h. based. cache. refresh. i nterval . ms The NameNode will
use this value as the number of milliseconds between subsequent cache path re-scans. By
default, this parameter is set to 300000, which is five minutes. Example:

<property>
<name>df s. nanenode. pat h. based. cache. refresh. i nt erval . ns</ nane>
<val ue>300000</ val ue>

</ property>

17

Hortonworks Data Platform July 21, 2015

» df s. ti ne. bet ween. resendi ng. cachi ng. di recti ves. ns The NameNode
will use this value as the number of milliseconds between resending caching directives.
Example:

<property>
<nane>df s. ti me. bet ween. r esendi ng. cachi ng. di recti ves. ns</ name>
<val ue>300000</ val ue>

</ property>

» df s. dat anode. f sdat aset cache. max. t hr eads. per. vol une The DataNode will
use this value as the maximum number of threads per volume to use for caching new
data. By default, this parameter is set to 4. Example:

<property>
<nane>df s. dat anode. f sdat aset cache. max. t hr eads. per. vol unme</ nane>
<val ue>4</ val ue>

</ property>

» df s. cachereport.interval Msec The DataNode will use this value as the number
of milliseconds between sending a full report of its cache state to the NameNode. By
default, this parameter is set to 10000, which is 10 seconds. Example:

<property>
<nane>df s. cachereport.interval Msec</ nane>
<val ue>10000</ val ue>

</ property>

« df s. nanenode. pat h. based. cache. bl ock. map. al | ocati on. per cent The
percentage of the Java heap that will be allocated to the cached blocks map. The cached
blocks map is a hash map that uses chained hashing. Smaller maps may be accessed more
slowly if the number of cached blocks is large. Larger maps will consume more memory.
The default value is 0.25 percent. Example:

<property>
<nanme>df s. nanenode. pat h. based. cache. bl ock. map. al | ocat i on. per cent </ nane>
<val ue>0. 25</ val ue>

</ property>

OS Limits

If you get the error "Cannot start datanode because the configured max locked memory
size...is more than the datanode's available RLIMIT_MEMLOCK ulimit," that means that
the operating system is imposing a lower limit on the amount of memory that you can lock
than what you have configured. To fix this, you must adjust the ul i mit - value that the
DataNode runs with. This value is usually configured in/ et ¢/ security/limts. conf,
but this may vary depending on what operating system and distribution you are using.

You have correctly configured this value whenyou canrunulimt - | from the shell
and get back either a higher value than what you have configured or the string "unlimited",
which indicates that there is no limit. Typically, ul i mt -1 returns the memory lock limit
in kilobytes (KB), but df s. dat anode. max. | ocked. nenor y must be specified in bytes.

For example, if the value of df s. dat anode. max. | ocked. nenory is set to 128000
bytes:

<property>
<nanme>df s. dat anode. nax. | ocked. menor y</ name>

18

Hortonworks Data Platform July 21, 2015

<val ue>128000</ val ue>
</ property>

Set the menl ock (max locked-in-memory address space) to a slightly higher value. For
example, to set memlock to 130 KB (130,000 bytes) for the hdfs user, you would add the
following lineto/ et c/security/limts. conf.

hdfs - nem ock 130

S Note

The information in this section does not apply to deployments on Windows.
Windows has no direct equivalentoful imt -1I.

3.6. Using Cache Pools and Directives

You can use the Command-Line Interface (CLI) to create, modify, and list Cache Pools and
Cache Directives via the hdf s cacheadm n subcommand.

Cache Directives are identified by a unique, non-repeating, 64-bit integer ID. IDs will not be
reused even if a Cache Directive is removed.

Cache Pools are identified by a unique string name.
You must first create a Cache Pool, and then add Cache Directives to the Cache Pool.
Cache Pool Commands
» addPool - Adds a new Cache Pool.
Usage:

hdf s cacheadm n -addPool <nanme> [-owner <owner>] [-group <group>]
[-mode <npde>] [-limit <limt>] [-maxTtl <maxTtl >]

Options:

Table 3.1. Cache Pool Add Options

Option Description
<nane The name of the pool.
<owner The user name of the owner of the pool. Defaults to the

current user.

<gr oup The group that the pool is assigned to. Defaults to the
primary group name of the current user.

<node The UNIX-style permissions assigned to the pool.
Permissions are specified in octal (e.g. 0755). Pool
permissions are set to 0755 by default.

<limt The maximum number of bytes that can be cached by
directives in the pool, in aggregate. By default, no limit is
set.

<maxTt | The maximum allowed time-to-live for directives being

added to the pool. This can be specified in seconds,
minutes, hours, and days (e.g. 120s, 30m, 4h, 2d). Valid
units are [smhd]. By default, no maximum is set. A value
of "never" specifies that there is no limit.

19

Hortonworks Data Platform July 21, 2015

* modi f yPool — Modifies the metadata of an existing Cache Pool.

Usage:

hdf s cacheadm n -nodi f yPool <name> [-owner <owner>] [-group <group>]
[-mode <npde>] [-limt <limt>] [-maxTtl <maxTtl >]

Options:

Table 3.2. Cache Pool Modify Options

Option Description

name The name of the pool to modify.

owner The user name of the owner of the pool.

group The group that the pool is assigned to.

node The UNIX-style permissions assigned to the pool.

Permissions are specified in octal (e.g. 0755).

limt The maximum number of bytes that can be cached by
directives in the pool, in aggregate.

maxTt | The maximum allowed time-to-live for directives being
added to the pool. This can be specified in seconds,
minutes, hours, and days (e.g. 120s, 30m, 4h, 2d). Valid
units are [smdh]. By default, no maximum is set. A value
of "never" specifies that there is no limit.

* renovePool - Removes a Cache Pool. This command also "un-caches" paths that are
associated with the pool.

Usage:

hdf s cacheadm n -renpvePool <nane>
Options:

Table 3.3. Cache Pool Remove Options

Option Description

nanme The name of the Cache Pool to remove.

* | i st Pool s — Displays information about one or more Cache Pools, such as name,
owner, group, permissions, and so on.

Usage:

hdf s cacheadmin -listPools [-stats] [<nanme>]
Options:

Table 3.4. Cache Pools List Options

Option Description
stats Displays additional Cache Pool statistics.
nanme If specified, lists only the named Cache Pool.

e hel p= Dicplayc. detailed information about a command

20

Hortonworks Data Platform July 21, 2015

Usage:

hdf s cacheadm n -hel p <command- nane>

Options:

Table 3.5. Cache Pool Help Options

Option Description

<conmmand- nane Displays detailed information for the specified command
name. If no command name is specified, detailed help is
displayed for all commands.

Cache Directive Commands
e addDi r ecti ve — Adds a new Cache Directive.

Usage:

hdf s cacheadni n -addDirective -path <path> -pool <pool-nane> [-force]
[-replication <replication>] [-tt]l <tinme-to-live>]

Options:

Table 3.6. Cache Pool Add Directive Options

Option Description
<pat h> The path to the cache directory or file.
<pool - nane> The Cache Pool to which the Cache Directive will be

added. You must have Write permission for the Cache
Pool in order to add new directives.

<-force> Skips checking of the Cache Pool resource limits.

<-replication> The UNIX-style permissions assigned to the pool.
Permissions are specified in octal (e.g. 0755). Pool
permissions are set to 0755 by default.

<limt> The cache replication factor to use. Default setting is 1.

<time-to-live> How long the directive is valid. This can be specified in
minutes, hours and days (e.g. 30m, 4h, 2d). Valid units
are [smdh]. A value of "never" indicates a directive that
never expires. If unspecified, the directive never expires.

e renoveDi recti ve — Removes a Cache Directive.

Usage:

hdfs cacheadm n -renoveDirective <id>
Options:

Table 3.7. Cache Pools Remove Directive Options

Option Description

<id> The ID of the Cache Directive to remove. You must
have Write permission for the pool that the directive
belongs to in order to remove it. You can use the -

21

Hortonworks Data Platform

July 21, 2015

Option

Description

li stDirectives command to display a list of Cache
Directive IDs.

e renoveDi recti ves — Removes all of the Cache Directives in a specified path.

Usage:

hdf s cacheadm n -renoveDirectives <path>

Options:

Table 3.8. Cache Pool Remove Directives Options

Option

Description

<pat h>

The path of the Cache Directives to remove. You must
have Write permission for the pool that the directives
belong to in order to remove them. You can use the -
li stDirectives command to display a list of Cache
Directives.

 |istDirectives —Returns a list of Cache Directives.

Usage:

hdfs cacheadnin -listDirectives [-stats] [-path <path>] [-pool <pool >]

Options:

Table 3.9. Cache Pools List Directives Options

Option Description

<pat h> Lists only the Cache Directives in the specified path. If
there is a Cache Directive in the <path> that belongs to a
Cache Pool for which you do not have Read access, it will
not be listed.

<pool > Lists on the Cache Directives in the specified Cache Pool.

<-stats> Lists path-based Cache Directive statistics.

22

Hortonworks Data Platform July 21, 2015

4. Configuring HDFS Compression

This section describes how to configure HDFS compression on Linux.

Linux supports Gzi pCodec, Def aul t Codec, BZi p2Codec, LzoCodec, and
SnappyCodec. Typically, Gzi pCodec is used for HDFS compression. Use the following
instructions to use GZi pCodec.

* Option I: To use &zi pCodec with a one-time only job:

hadoop j ar hadoop- exanpl es-1. 1. 0- SNAPSHOT. j ar sort sbr"-Dmapred. conpr ess.
map. out put =t rue" sbr"- Dmapr ed. map. out put . conpr essi on. codec=or g. apache.
hadoop. i 0. conpr ess. &zi pCodec" sbr "-Dmapr ed. out put. conpr ess=true" sbr"-
Dmapr ed. out put . conpr essi on. codec=or g. apache. hadoop. i 0. conpr ess. Gzi pCodec" sbr
- out Key org. apache. hadoop. i 0. Text sbr -out Val ue org. apache. hadoop. i 0. Text
i nput out put

» Option lI: To enable Gzi pCodec as the default compression:

e Editthecore-site.xm file onthe NameNode host machine:

<property>
<name>i 0. conpr essi on. codecs</ nane>
<val ue>or g. apache. hadoop. i 0. conpress. Gi pCodec,
or g. apache. hadoop. i 0. conpr ess. Def aul t Codec, com hadoop. conpr essi on. | zo.
LzoCodec,
or g. apache. hadoop. i 0. conpr ess. SnappyCodec</ val ue>
<description>A |ist of the conpression codec cl asses that can be used
for conpressi on/ deconpressi on. </ descri pti on>
</ property>

 Edit the mapr ed-site. xm file on the JobTracker host machine:

<property>
<nane>mapr ed. conpr ess. map. out put </ name>
<val ue>true</val ue>

</ property>

<property>

<nane>napr ed. map. out put . conpr essi on. codec</ nanme>

<val ue>or g. apache. hadoop. i 0. conpr ess. &i pCodec</ val ue>
</ property>

<property>
<nane>mapr ed. out put . conpr essi on. t ype</ nane>
<val ue>BLOCK</ val ue>

</ property>

¢ (Optional) - Enable the following two configuration parameters to enable job output
compression. Edit the mapr ed-si t e. xnl file on the Resource Manager host
machine:

<property>
<nane>napr ed. out put . conpr ess</ nane>
<val ue>true</ val ue>

</ property>

23

Hortonworks Data Platform July 21, 2015

<property>

<name>mapr ed. out put . conpr essi on. codec</ nane>

<val ue>or g. apache. hadoop. i 0. conpr ess. &i pCodec</ val ue>
</ property>

¢ Restart the cluster using the applicable commands in the "Controlling HDP Services
Manually" section of Installing HDP Manually

24

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html

Hortonworks Data Platform July 21, 2015

5. Configuring Rack Awareness On HDP

Use the following instructions to configure rack awareness on an HDP cluster.

5.1. Create a Rack Topology Script

Topology scripts are used by Hadoop to determine the rack location of nodes. This
information is used by Hadoop to replicate block data to redundant racks.

1. Create a topology script and data file. The topology script must be executable.

Sample Topology Script Named rack-topology.sh
#1/ bi n/ bash

Adj ust/Add the property "net.topol ogy.script.file.name"
to core-site.xm with the "absolute"” path the this
file. ENSURE the file is "executabl e".

Supply appropriate rack prefix
RACK_PREFI X=def aul t

To test, supply a hostnanme as script input:
if [$# -gt 0]; then

CTL_FI LE=${CTL_FI LE: - "r ack_t opol ogy. dat a"}
HADOOP_CONF=${ HADOOP_CONF: - "/ et ¢/ hadoop/ conf "}

if [! -f ${HADOOP_CONF}/${CTL_FILE}]; then
echo -n "/ $RACK_PREFI X/ rack "

exit O

fi

while [$# -gt 0] ; do

nodeAr g=$1

exec< ${HADOOP_CONF}/ ${CTL_FI LE}
while read line ; do

ar=($line)

if ["${ar[0]}" = "$nodeArg"] ; then
resul t="${ar[1]}"

f

done

shift

if [-z "$result”] ; then

echo -n "/ $RACK_PREFI X/ rack "

el se

echo -n "/$RACK_PREFI X/ rack_$result "
f

done

el se

echo -n "/$RACK_PREFI X/ rack "
f

Sample Topology Data File Named rack_topology.data

25

Hortonworks Data Platform July 21, 2015

This file should be

- Placed in the /etc/hadoop/conf directory

- On the Namenode (and backups | E: HA, Fail over, etc)

- On the Job Tracker OR Resource Manager (and any Fail over JT' s/RM s)
This file should be placed in the /etc/hadoop/conf directory.

HOH H R H

Add Hostnanes to this file. Format <host ip> <rack_|l ocation>
192. 168. 2. 10 01
192.168. 2.11 02
192.168.2.12 03

2. Copy both of these files to the / et ¢/ hadoop/ conf directory on all cluster nodes.

3. Runtherack-t opol ogy. sh script to ensure that it returns the correct rack
information for each host.

5.2. Add the Topology Script Property to core-
site.xml

1. Stop HDFS using the applicable commands in the "Controlling HDP Services Manually"
section of Installing HDP Manually

2. Add the following property to core-site. xni :

<property>

<nane>net . t opol ogy. scri pt.fil e. nane</ name>

<val ue>/ et ¢/ hadoop/ conf/rack-t opol ogy. sh</ val ue>
</ property>

By default the topology script will process up to 100 requests per invocation. You can also
specify a different number of requests with the net . t opol ogy. scri pt. nunber. ar gs
property. For example:

<property>
<nanme>net . t opol ogy. scri pt. nunber . ar gs</ name>

<val ue>75</ val ue>
</ property>

5.3. Restart HDFS and MapReduce

Restart HDFS and MapReduce using the applicable commands in the "Controlling HDP
Services Manually" section of Installing HDP Manually

5.4. Verify Rack Awareness

After the services have started, you can use the following methods to verify that rack
awareness has been activated:

1. Look in the NameNode logs located in / var / | og/ hadoop/ hdf s/ . For example:
hadoop- hdf s- nanmenode- sandbox. | 0og. You should see an entry like this:

014-01- 13 15:58: 08, 495 | NFO or g. apache. hadoop. net . Net wor kTopol ogy: Addi ng

26

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html

Hortonworks Data Platform July 21, 2015

a new node: /rack01/<i paddress>

2. The Hadoop f sck command should return something like the following (if there are
two racks):

Status: HEALTHY Total size: 123456789 B Total dirs: 0 Total files: 1
Total blocks (validated): 1 (avg. bl ock size 123456789 B)

Mnimally replicated blocks: 1 (100.0 % COver-replicated blocks: 0 (0.0 %
Under-replicated blocks: 0 (0.0 %9 Ms-replicated blocks: 0 (0.0 %
Default replication factor: 3 Average block replication: 3.0 Corrupt

bl ocks: 0 Mssing replicas: 0 (0.0 %9 Nunber of data-nodes: 40 Nunber of
racks: 2 FSCK ended at Mon Jan 13 17:10:51 UTC 2014 in 1 mlliseconds

3. The Hadoop df sadmi n -report command will return a report that includes the
rack name next to each machine. The report should look something like the following
excerpted example:

[bsm t h@adoop0l ~]$ sudo -u hdfs hadoop df sadmin -report

Confi gured Capacity: 19010409390080 (17.29 TB) Present Capacity:
18228294160384 (16.58 TB) DFS Remmi ni ng: 5514620928000 (5.02 TB) DFS
Used: 12713673232384 (11.56 TB) DFS Used% 69.75% Under replicated bl ocks:
181 Bl ocks with corrupt replicas: 0 M ssing bl ocks: O
--- Dat anodes avai | abl e:

5 (5 total, O dead) Nane: 192.168.90.231: 50010 (h2d1. hdp. | ocal) Host nane:
h2d1. hdp. | ocal Rack: /default/rack_02 Deconm ssion Status : Normal
Configured Capacity: 15696052224 (14.62 GB) DFS Used: 314380288

(299.82 MB) Non DFS Used: 3238612992 (3.02 GB) DFS Renmmining: 12143058944
(11.31 GB) DFS Used% 2.00% DFS Renmi ni ng% 77.36%

Confi gured Cache Capacity: 0 (0 B) Cache Used: 0 (0 B) Cache Renmining: O
(0 B) Cache Used% 100.00% Cache Remai ni ng% 0.00% Last contact: Thu Jun 12
11: 39: 51 EDT 2014

27

Hortonworks Data Platform July 21, 2015

6. Customizing HDFS
6.1. Customize the HDFS Home Directory

By default, the HDFS home directory is set to / user / <user _nane>. You can use the
df s. user. hone. base. di r property to customize the HDFS home directory.

1. Inthe hdf s-si te. xm file, set the following property:

<property>

<nane>df s. user. hone. base. di r </ nane>

<val ue>/ user </ val ue>

<descri pti on>Base directory of user hone.</description>
</ property>

Where <val ue> is the path to the new home directory.

6.2. Set the Size of the NameNode Edits Directory

You can use the following hdf s- si t e. xm properties to control the size of the directory
that holds the NameNode edi t s directory.

» df s. nanenode. num checkpoi nts. r et ai ned - The number of image checkpoint
files that are retained in storage directories. All edit logs necessary to recover an up-to-
date namespace from the oldest retained checkpoint are also retained.

e df s. nanenode. num extr a. edi t s. r et ai ned — The number of extra transactions
that should be retained beyond what is minimally necessary for a NameNode restart. This
can be useful for audit purposes, or for an HA setup where a remote Standby Node may
have been offline for some time and require a longer backlog of retained edits in order
to start again.

28

Hortonworks Data Platform July 21, 2015

7. Hadoop Archives

The Hadoop Distributed File System (HDFS) is designed to store and process large data sets,
but HDFS can be less efficient when storing a large number of small files. When there are
many small files stored in HDFS, these small files occupy a large portion of the namespace.
As a result, disk space is under-utilized because of the namespace limitation.

Hadoop Archives (HAR) can be used to address the namespace limitations associated

with storing many small files. A Hadoop Archive packs small files into HDFS blocks more
efficiently, thereby reducing NameNode memory usage while still allowing transparent
access to files. Hadoop Archives are also compatible with MapReduce, allowing transparent
access to the original files by MapReduce jobs.

7.1. Introduction

The Hadoop Distributed File System (HDFS) is designed to store and process large
(terabytes) data sets. For example, a large production cluster may have 14 PB of disk space
and store 60 million files.

However, storing a large number of small files in HDFS is inefficient. A file is generally
considered to be "small" when its size is substantially less than the HDFS block size, which
is 256 MB by default in HDP. Files and blocks are name objects in HDFS, meaning that they
occupy namespace (space on the NameNode). The namespace capacity of the system is
therefore limited by the physical memory of the NameNode.

When there are many small files stored in the system, these small files occupy a large
portion of the namespace. As a consequence, the disk space is underutilized because of the
namespace limitation. In one real-world example, a production cluster had 57 million files
less than 256 MB in size, with each of these files taking up one block on the NameNode.
These small files used up 95% of the namespace but occupied only 30% of the cluster disk
space.

Hadoop Archives (HAR) can be used to address the namespace limitations associated
with storing many small files. HAR packs a number of small files into large files so that the
original files can be accessed transparently (without expanding the files).

HAR increases the scalability of the system by reducing the namespace usage and
decreasing the operation load in the NameNode. This improvement is orthogonal to
memory optimization in the NameNode and distributing namespace management across
multiple NameNodes.

Hadoop Archive is also compatible with MapReduce — it allows parallel access to the
original files by MapReduce jobs.

7.2. Hadoop Archive Components

HAR Format Data Model

The Hadoop Archive data format has the following layout:

29

Hortonworks Data Platform July 21, 2015

foo. har/_masterindex //stores hashes and of fsets
foo.har/ _index //stores file statuses
foo.har/part-[1..n] //stores actual file data

The file data is stored in multipart files, which are indexed in order to retain the original
separation of data. Moreover, the file parts can be accessed in parallel by MapReduce
programs. The index files also record the original directory tree structures and file status.

HAR File System

Most archival systems, such as tar, are tools for archiving and de-archiving. Generally, they
do not fit into the actual file system layer and hence are not transparent to the application
writer in that the archives must be expanded before use.

The Hadoop Archive is integrated with the Hadoop file system interface. The

Har Fi | eSyst emimplements the Fi | eSyst eminterface and provides access via the

har : // scheme. This exposes the archived files and directory tree structures transparently
to users. Files in a HAR can be accessed directly without expanding them.

For example, if we have the following command to copy an HDFS file to a local directory:

hdfs df s —get hdfs://namenode/foo/file-1 |ocaldir

Suppose a Hadoop Archive bar . har is created from the f 00 directory. With the HAR, the
command to copy the original file becomes:

hdf s df s —get har://namenode/ bar. har/foo/file-1 localdir

Users only need to change the URI paths. Alternatively, users may choose to create a
symbolic link (from hdf s: / / namenode/ f oo to har : / / nanenode/ bar . har/f 0o in
the example above), and then even the URIs do not need to be changed. In either case,
Har Fi | eSyst emwill be invoked automatically to provide access to the files in the HAR.
Because of this transparent layer, HAR is compatible with the Hadoop APIs, MapReduce,
the FS shell command-line interface, and higher-level applications such as Pig, Zebra,
Streaming, Pipes, and DistCp.

Hadoop Archiving Tool

Hadoop Archives can be created using the Hadoop archiving tool. The archiving tool uses
MapReduce to efficiently create Hadoop Archives in parallel. The tool can be invoked using
the command:

hadoop archive -archiveNane nanme -p <parent> <src>* <dest>

A list of files is generated by traversing the source directories recursively, and then the list
is split into map task inputs. Each map task creates a part file (about 2 GB, configurable)
from a subset of the source files and outputs the metadata. Finally, a reduce task collects
metadata and generates the index files.

7.3. Creating a Hadoop Archive

The Hadoop archiving tool can be invoked using the following command:

hadoop archive -archiveNane nanme -p <parent> <src>* <dest>

30

Hortonworks Data Platform July 21, 2015

Where - ar chi veNane is the name of the archive you would like to create. The archive
name should be given a .har extension. The <par ent > argument is used to specify the
relative path to the location where the files are to be archived in the HAR.

Example

hadoop archi ve -archiveNane foo. har -p /user/hadoop dirl dir2 /user/zoo

This example creates an archive using / user / hadoop as the relative archive directory. The
directories / user / hadoop/ di r 1 and / user/ hadoop/ di r 2 will be archived in the /
user/ zoo/ f 0o. har archive.

Archiving does not delete the source files. If you would like to delete the input files after
creating an archive to reduce namespace, you must manually delete the source files.

Although the hadoop archive command can be run from the host file system, the archive
file is created in the HDFS file system from directories that exist in HDFS. If you reference a
directory on the host file system rather than in HDFS, you will get the following error:

The resolved paths set is enpty. Please check whether the srcPaths exist,

wher e srcPat hs
= [</directory/ pat h>]

To create the HDFS directories used in the preceding example, use the following series of
commands:

hdfs dfs -nkdir /user/zoo
hdfs dfs -nkdir /user/hadoop

hdfs dfs -nkdir /user/hadoop/dir1l
hdfs dfs -nkdir /user/hadoop/dir2

7.4. Looking Up Files in Hadoop Archives

The hdfs dfs -1 s command can be used to look up files in Hadoop archives. Using the
example / user/ zoo/ f 00. har archive created in the previous section, use the following
command to list the files in the archive:

hdfs dfs -lIs har:///user/zool/foo. har/

This command returns:

har:///user/zoo/foo. har/dirl
har:///user/zoo/foo. har/dir2

These archives were created with the following command:

hadoop archive -archiveNane foo.har -p /user/hadoop dirl dir2 /user/zoo

If you change the command to:

hadoop archive -archiveNane foo.har -p /user/ hadoop/dirl hadoop/dir2 /user/
zoo

And then run the following command:

hdfs dfs -Is -R har:///user/zoo/foo. har

31

Hortonworks Data Platform July 21, 2015

The following output is returned:

har:///user/zoo/ f oo. har/ hadoop
har:///user/zoo/ f oo. har/ hadoop/dir1l
har:///user/zoo/foo. har/hadoop/ dir2

Note that the modified parent argument causes the files to be archived relative to / user/
rather than/ user/ hadoop.

7.5. Hadoop Archives and MapReduce

To use Hadoop Archives with MapReduce, you must reference files slightly differently than
with the default file system. If you have a Hadoop Archive stored in HDFS in/ user/ zoo/
f 00. har, you must specify the input directory as har: / / / user/ zoo/ f oo. har to use it
as a MapReduce input. Since Hadoop Archives are exposed as a file system, MapReduce is
able to use all of the logical input files in Hadoop Archives as input.

32

Hortonworks Data Platform July 21, 2015

8. JIMX Metrics APIs for HDFS Daemons

You can use the following methods to access HDFS metrics using the Java Management
Extensions (JMX) APlIs.

Use the HDFS Daemon Web Interface

You can access JMX metrics through the web interface of an HDFS daemon. This is the
recommended method.

For example, use the following command format to access the NameNode JMX:

curl -i http://Ilocal host: 50070/ nx

You can use the qry parameter to fetch only a particular key:

curl -i http://Iocal host: 50070/ nx?qr y=Hadoop: ser vi ce=NanmeNode, nanme=
NameNodel nf o

Directly Access the JMX Remote Agent

This method requires that the JMX remote agent is enabled with a JVM option when
starting HDFS services.

For example, the following JVM options in hadoop- env. sh are used to enable the JMX
remote agent for the NameNode. It listens on port 8004 with SSL disabled. The user name
and password are saved in the nxr enot e. passwor d file.

export HADOOP_NAMENODE OPTS="- Dcom sun. nenagenent . j nxr enot e

- Dcom sun. managenent . j nxr enot e. passwor d. fi | e=$HADOOP_CONF_DI R/ j nxr enpt e.
password

- Dcom sun. managenent . j mxr enot e. ssl =f al se

- Dcom sun. nanagenent . j nxr enot e. por t =8004 $HADOOP_NAMENCDE OPTS"

Details about related settings can be found here. You can also use the jmxquery tool to
retrieve information through JMX.

Hadoop also has a built-in JMX query tool, j mxget . For example:

hdf s jmxget -server |ocal host -port 8004 -service NaneNode

Note that j nxget requires that authentication be disabled, as it does not accept a user
name and password.

Using JMX can be challenging for operations personnel who are not familiar with
JMX setup, especially JIMX with SSL and firewall tunnelling. Therefore, it is generally
recommended that you collect JXM information through the web interface of HDFS
daemons rather than directly accessing the JMX remote agent.

33

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
https://code.google.com/p/jmxquery/

Hortonworks Data Platform July 21, 2015

9. Memory as Storage (Technical
Preview)

This chapter describes how to use DataNode memory as storage in HDFS.

E I Note

This feature is a technical preview and considered under development. Do not
use this feature in your production systems. If you have questions regarding this
feature, contact Support by logging a case on our Hortonworks Support Portal
at https://support.hortonworks.com.

9.1. Introduction

HDFS supports efficient writes of large data sets to durable storage, and also provides
reliable access to the data. This works well for batch jobs that write large amounts of
persistent data.

Emerging classes of applications are driving use cases for writing smaller amounts of
temporary data. Using DataNode memory as storage addresses the use case of applications
that want to write relatively small amounts of intermediate data sets with low latency.

Writing block data to memory reduces durability, as data can be lost due to process restart
before it is saved to disk. HDFS attempts to save replica data to disk in a timely manner to
reduce the window of possible data loss.

DataNode memory is referenced using the RAM_DISK storage type and the LAZY_PERSIST
storage policy.

Using DataNode memory as HDFS storage involves the following steps:

1. Shut down the DataNode.

2. Mount a portion of DataNode memory for use by HDFS.

3. Assign the RAM_DISK storage type to the DataNode, and enable short-circuit reads.

4. Set the LAZY_PERSIST storage policy on the HDFS files and directories that will use
memory as storage.

5. Restart the DataNode.

If you update a storage policy setting on a file or directory, you must use the HDFS nover
data migration tool to actually move blocks as specified by the new storage policy.

Memory as storage represents one aspect of YARN resource management capabilities that
includes CPU scheduling, CGroups, node labels, and archival storage.

9.2. HDFS Storage Types

HDFS storage types can be used to assign data to different types of physical storage media.
The following storage types are available:

34

https://support.hortonworks.com

Hortonworks Data Platform

July 21, 2015

SSD - Solid State Drive

RAM_DISK - DataNode Memory

DISK - Disk drive storage (default storage type)

If no storage type is assigned, DISK is used as the default storage type.

9.3. The LAZY_PERSIST Memory Storage Policy

You can store data on configured DataNode memory using the LAZY_PERSIST storage

policy.

ARCHIVE - Archival storage (high storage density, low processing resources)

For LAZY_PERSIST, the first replica is stored on RAM_DISK (DataNode memory), and
the remaining replicas are stored on DISK. The fallback storage for both creation and
replication is DISK.

The following table summarizes these replication policies:

Policy ID Policy Name Block Placement (for |Fallback storage for |Fallback storage for
n replicas) creation replication

15 LAZY_PERSIST RAM_DISK: 1, DISK DISK
DISK:n-1

N

Note

Currently, storage policies cannot be edited.

9.4. Configuring Memory as Storage

Use the following steps to configure DataNode memory as storage:

1. Shut Down the DataNode

Shut down the DataNode using the applicable commands in the Controlling HDP Services
Manually section of the HDP Reference Guide.

2. Mount a Portion of DataNode Memory for HDFS

To use DataNode memory as storage, you must first mount a portion of the DataNode
memory for use by HDFS.

For example, you would use the following commands to allocate 2GB of memory for HDFS

storage:

sudo nkdir -p /mt/hdf srandi sk

sudo mount -t tnpfs -0 size=2048m tnpfs /mt/ hdf sramdi sk
Sudo nkdir -p /usr/lib/hadoop-hdfs

3. Assign the RAM_DISK Storage Type and Enable Short-Circuit Reads

35

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform July 21, 2015

Edit the following properties in the / et ¢/ hadoop/ conf/ hdf s-si te. xm file to assign
the RAM_DISK storage type to DataNodes and enable short-circuit reads.

* The df s. nan®e. di r property determines where on the local filesystem a DataNode
should store its blocks. To specify a DataNode as RAM_DISK storage, insert [RAM_DISK]
at the beginning of the local file system mount path and add it to the df s. nane. di r
property.

* To enable short-circuit reads, set the value of df s. cl i ent.read. shortcircuit to
true.

For example:
<property>
<name>df s. dat a. di r </ name>
<val ue>file:///grid/3/aalhdfs/data/,[RAM DI SK]file:/// mt/hdfsranmdi sk/ </

val ue>
</ property>

<property>
<name>dfs. cl i ent.read. shortcircuit</nane>
<val ue>t rue</val ue>
</ property>
<property>
<nanme>df s. domai n. socket . pat h</ name>
<val ue>/var/ | i b/ hadoop- hdf s/ dn_socket </ val ue>
</ property>
<property>
<name>df s. checksum t ype</ nane>
<val ue>NULL</ val ue>
</ property>
4. Set the LAZY_PERSIST Storage Policy on Files or Directories
Set a storage policy on a file or a directory.
Command:
hdf s df sadmi n -set St oragePol i cy <pat h> <pol i cyName>
Arguments:
» <path> - The path to a directory or file.
» <policyName> - The name of the storage policy.
Example:
hdf s df sadmi n -set St oragePolicy /nmenoryl LAZY PERSI ST
Get the storage policy of a file or a directory.
Command:

hdf s df sadmi n - get St or agePol i cy <pat h>

Arguments:

36

Hortonworks Data Platform July 21, 2015

» <path> - The path to a directory or file.

Example:

hdf s df sadmi n - get StoragePolicy /nenoryl LAZY_ PERSI ST
5. Start the DataNode

Start the DataNode using the applicable commands in the Controlling HDP Services
Manually section of the HDP Reference Guide.

Using Mover to Apply Storage Policies

When you update a storage policy setting on a file or directory, the new policy is not
automatically enforced. You must use the HDFS nover data migration tool to actually
move blocks as specified by the new storage policy.

The nover data migration tool scans the specified files in HDFS and checks to see if the
block placement satisfies the storage policy. For the blocks that violate the storage policy,
it moves the replicas to the applicable storage type in order to fulfill the storage policy
requirements.

Command:

hdfs mover [-p <files/dirs> | -f <local file name>]
Arguments:
* -p<files/dirs> - Specify a space-separated list of HDFS files/directories to migrate.

* f<local file> - Specify a local file list containing a list of HDFS files/directories to migrate.

3 Note
When both - p and - f options are omitted, the default path is the root
directory.

37

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform July 21, 2015

10. Running DataNodes as Non-Root

This chapter describes how to run DataNodes as a non-root user.

10.1. Introduction

10.2

Historically, part of the security configuration for HDFS involved starting the DataNode

as the root user, and binding to privileged ports for the server endpoints. This was done

to address a security issue whereby if a MapReduce task was running and the DataNode
stopped running, it would be possible for the MapReduce task to bind to the DataNode
port and potentially do something malicious. The solution to this scenario was to run the
DataNode as the root user and use privileged ports. Only the root user can access privileged
ports.

You can now use Simple Authentication and Security Layer (SASL) to securely run
DataNodes as a non-root user. SASL is used to provide secure communication at the
protocol level.

c Important

Make sure to execute a migration from using root to start DataNodes to using
SASL to start DataNodes in a very specific sequence across the entire cluster.
Otherwise, there could be a risk of application downtime.

In order to migrate an existing cluster that used root authentication to start using SASL
instead, first ensure that HDP 2.2 or later has been deployed to all cluster nodes as well

as any external applications that need to connect to the cluster. Only the HDFS client in
versions HDP 2.2 and later can connect to a DataNode that uses SASL for authentication of
data transfer protocol, so it is vital that all callers have the correct version before migrating.
After HDP 2.2 or later has been deployed everywhere, update the configuration of any
external applications to enable SASL. If an HDFS client is enabled for SASL, it can connect
successfully to a DataNode running with either root authentication or SASL authentication.
Changing configuration for all clients guarantees that subsequent configuration changes
on DataNodes will not disrupt the applications. Finally, each individual DataNode can be
migrated by changing its configuration and restarting. It is acceptable to temporarily have
a mix of some DataNodes running with root authentication and some DataNodes running
with SASL authentication during this migration period, because an HDFS client enabled for
SASL can connect to both.

Configuring DataNode SASL

Use the following steps to configure DataNode SASL to securely run a DataNode as a non-
root user:

1. Shut Down the DataNode

Shut down the DataNode using the applicable commands in the "Controlling HDP Services
Manually" section of HDP Reference Guide.

2. Enable SASL

38

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform July 21, 2015

Configure the following properties in the / et ¢/ hadoop/ conf/ hdf s- si t e. xm file to
enable DataNode SASL.

The df s. dat a. transfer. prot ecti on property enables DataNode SASL. You can set
this property to one of the following values:

e aut henti cat i on — Establishes mutual authentication between the client and the
server.

* i nt egrity —in addition to authentication, it guarantees that a man-in-the-middle
cannot tamper with messages exchanged between the client and the server.

* privacy —in addition to the features offered by authentication and integrity, it also
fully encrypts the messages exchanged between the client and the server.

In addition to setting a value for the df s. dat a. t r ansf er. prot ecti on property, you
must set the df s. htt p. pol i cy property to HTTPS_ONLY. You must also specify ports
for the DataNode RPC and HTTP Servers.

3 Note

For more information on configuring SSL, see "Enable SSL on HDP Components"
in the HDP Security Guide.

For example:

<property>
<nanme>df s. dat a. t ransf er. prot ecti on</ nane>
<val ue>i ntegrity</val ue>

</ property>

<property>
<nane>df s. dat anode. addr ess</ nane>
<val ue>0. 0. 0. 0: 10019</ val ue>

</ property>

<property>
<name>df s. dat anode. htt p. addr ess</ nane>
<val ue>0. 0. 0. 0: 10022</ val ue>

</ property>

<property>
<nanme>df s. htt p. pol i cy</ name>
<val ue>HTTPS_ONLY</ val ue>

</ property>

3 Note

If you are already using the following encryption setting:

df s. encrypt . data. transfer=true
This is similar to:

df s. data. transfer. protection=privacy

39

Hortonworks Data Platform July 21, 2015

These two settings are mutually exclusive, so you should not have both of them
set. However, if both are set, df s. encrypt . dat a. t ransf er will not be
used.

3. Update Environment Settings

Edit the following setting in the / et ¢/ hadoop/ conf / hadoop- env. sh file, as shown
below:

#0n secure datanodes, user to run the datanode as after dropping privil eges
export HADOOP_SECURE DN USER=

The export HADOOP_SECURE DN USER=hdf s line enables the legacy security
configuration, and must be set to an empty value in order for SASL to be enabled.

4. Start the DataNode

Start the DataNode services using the applicable commands in the "Controlling HDP
Services Manually" section of HDP Reference Guide.

40

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform

July 21, 2015

11. Short Circuit Local Reads On HDFS

In HDFS, reads normally go through the DataNode. Thus, when a client asks the DataNode
to read a file, the DataNode reads that file off of the disk and sends the data to the client
over a TCP socket. "Short-circuit" reads bypass the DataNode, allowing the client to read the
file directly. Obviously, this is only possible in cases where the client is co-located with the
data. Short-circuit reads provide a substantial performance boost to many applications.

11.1. Prerequisites

To configure short-circuit local reads, you must enable | i bhadoop. so. See Native Libraries
for details on enabling this library.

11.2. Configuring Short-Circuit Local Reads on

HDFS

To configure short-circuit local reads, add the following properties to the hdf s- si t e. xml
file. Short-circuit local reads need to be configured on both the DataNode and the client.

11.3. Short-Circuit Local Read Properties in hdfs-

site.xml

Property Name

Property Value

Description

dfs.client.read.shortcircuit

true

Set this to true to enable short-circuit
local reads.

dfs.domain.socket.path

/var/lib/hadoop-hdfs/ dn_socket

The path to the domain socket. Short-
circuit reads make use of a UNIX
domain socket. This is a special path

in the file system that allows the client
and the DataNodes to communicate.
You will need to set a path to this
socket. The DataNode needs to be able
to create this path. On the other hand,
it should not be possible for any user
except the hdfs user or root to create
this path. For this reason, paths under /
var/run or /var/lib are often used.

In the file system that allows the client
and the DataNodes to communicate.
You will need to set a path to this
socket. The DataNode needs to be able
to create this path. On the other hand,
it should not be possible for any user
except the hdfs user or root to create
this path. For this reason, paths under /
var/run or /var/lib are often used.

dfs.client.domain.socket.data.traffic

false

This property controls whether or

not normal data traffic will be passed
through the UNIX domain socket. This
feature has not been certified with
HDP releases, so it is recommended
that you set the value of this property
tofal se.

41

http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/NativeLibraries.html

Hortonworks Data Platform

July 21, 2015

Property Name

Property Value

Description

Abnormal data traffic will be passed
through the UNIX domain socket.

dfs.client.use.legacy.blockreader.local

false

Setting this value to f al se specifies
that the new version (based on
HDFS-347) of the short-circuit reader

is used. This new new short-circuit
reader implementation is supported
and recommended for use with HDP.
Setting this value to t r ue would mean
that the legacy short-circuit reader
would be used.

dfs.datanode.hdfs-blocks-
metadata.enabled

true

Boolean which enables back-end
DataNode-side support for the
experimental

Di stribut edFil eSyst enttget Fil e

VBl ockSt or ageLocat i onsAPI.

dfs.client.file-block-storage-
locations.timeout

60

Timeout (in seconds) for the parallel
RPCs made in

Di stri but edFi | eSystem
#get Fi | eBl ockSt or ageLocat i ons

This property is deprecated but is still
supported for backward

compatibility

dfs.client.file-block-storage-
locations.timeout.millis

60000

Timeout (in milliseconds) for the
parallel RPCs made in

Di stri but edFil eSystem
#get Fi | eBl ockSt or ageLocat i ons
This property replaces

dfs.client.file-Dbl ock-
storage-| ocations. timeout,

and offers a finer level of granularity.

dfs.client.read.shortcircuit.

skip.checksum

false

If this configuration parameter is

set, short-circuit local reads will skip
checksums. This is normally not
recommended, but it may be useful
for special setups. You might consider
using this if you are doing your own
checksumming outside of HDFS.

dfs.client.read.shortcircuit.

streams.cache.size

256

The DFSClient maintains a cache of
recently opened file descriptors. This
parameter controls the size of that
cache. Setting this higher will use more
file descriptors, but potentially provide
better performance on workloads
involving many seeks.

dfs.client.read.shortcircuit.

streams.cache.expiry.ms

300000

This controls the minimum amount of
time (in milliseconds) file descriptors
need to sit in the client cache context
before they can be closed for being

inactive for too long.

The XML for these entries:

42

~

~

Hortonworks Data Platform July 21, 2015

<confi guration>

<property>
<nane>dfs.client.read. shortcircuit</name>
<val ue>t rue</ val ue>

</ property>

<property>

<nanme>df s. domai n. socket . pat h</ name>

<val ue>/var/ | i b/ hadoop- hdf s/ dn_socket </ val ue>
</ property>

<property>
<nane>dfs. cl i ent. domai n. socket. data.traffic</nanme>
<val ue>f al se</ val ue>

</ property>

<property>
<name>df s. cli ent. use. | egacy. bl ockr eader. | ocal </ nane>
<val ue>f al se</ val ue>

</ property>

<property>
<nane>df s. dat anode. hdf s- bl ocks- net adat a. enabl ed</ name>
<val ue>t rue</ val ue>

</ property>

<property>
<nane>dfs.client.file-bl ock-storage-|locations.timeout.mllis</name>
<val ue>60000</ val ue>

</ property>

<property>
<nanme>dfs. client.read. shortcircuit.skip.checksun</ nane>
<val ue>f al se</ val ue>

</ property>

<property>
<name>dfs.client.read. shortcircuit.streans.cache. size</ nane>
<val ue>256</ val ue>

</ property>

<property>
<name>dfs. client.read. shortcircuit.streans. cache. expi ry. ms</ name>
<val ue>300000</ val ue>

</ property>

</ confi guration>

43

Hortonworks Data Platform July 21, 2015

12. WebHDFS Administrator Guide

Use the following instructions to set up WebHDFS:

1. Set up WebHDFS. Add the following property to the hdf s-si te. xmi file
<property>
<nane>df s. webhdf s. enabl ed</ nane>
<val ue>t rue</ val ue>
</ property>
If running a secure cluster, follow the steps listed below.

1. Create an HTTP service user principal using the command given below:

kadm n: addprinc -randkey HTTP/ $<Ful |y _Qual i fi ed_Donmai n_Nanme>@<Real m Nanme>.
CcoM

where:

Create an HTTP service user principal using the command given below:

kadmi n: addprinc -randkey HTTP/ $<Fully_Qual i fi ed_Domai n_Name>@<Real m Nane>.
CcoM

where:
e Ful ly_Qualified _Domai n_Nane: Host where NameNode is deployed
« Real m Nane: Name of your Kerberos realm

2. Create keytab files for the HTTP principals.

kadm n: xst -norandkey -k /etc/security/spnego.service. keytab HTTP/
$<Ful ly_Qual i fi ed_Donmai n_Nane>

3. Verify that the keytab file and the principal are associated with the correct service.

klist —k -t /etc/security/spnego.service. keyt ab

4. Add the following properties to the hdf s- si t e. xm file.

<property>
<nane>df s. web. aut henti cati on. ker ber os. pri nci pal </ nane>
<val ue>HTTP/ $<Ful | y_Qual i fi ed_Donmi n_Nanme>@<Real m Nanme>. COW/ val ue>
</ property>
<property>
<nane>df s. web. aut henti cati on. ker ber os. keyt ab</ name>
<val ue>/ et c/ security/ spnego. servi ce. keyt ab</ val ue>
</ property>

where:

e Fully_Qualified_Domai n_Nane: Host where NameNode is deployed

———= Real-m-Nane:Name of your Kerberesrealp—— — — — —
44

Hortonworks Data Platform July 21, 2015

5. Restart the NameNode and DataNode services using the applicable commands in the
"Controlling HDP Services Manually" section of Installing HDP Manually.

45

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html

Hortonworks Data Platform July 21, 2015

13. HDFS "Data at Rest” Encryption

13.1.

Encryption is a form of data security that is required in industries such as healthcare and the
payment card industry. Hadoop provides several ways to encrypt stored data.

* The lowest level of encryption is volume encryption, which protects data after physical
theft or accidental loss of a disk volume. The entire volume is encrypted; this approach
does not support finer-grained encryption of specific files or directories. In addition,
volume encryption does not protect against viruses or other attacks that occur while a
system is running.

» Application level encryption (encryption within an application running on top of
Hadoop) supports a higher level of granularity and prevents "rogue admin" access, but
adds a layer of complexity to the application architecture.

* A third approach, HDFS data at rest encryption, encrypts selected files and directories
stored ("at rest") in HDFS. This approach uses specially designated HDFS directories
known as "encryption zones."

This chapter focuses on the third approach, HDFS data at rest encryption. The chapter is
intended as an introductory quick start to HDFS data at rest encryption. Content will be
updated regularly.

HDFS Encryption Overview

HDFS data at rest encryption implements end-to-end encryption of data read from and
written to HDFS. End-to-end encryption means that data is encrypted and decrypted only
by the client. HDFS does not have access to unencrypted data or keys.

HDFS encryption involves several elements:

* Encryption key: A new level of permission-based access protection, in addition to
standard HDFS permissions.

» HDFS encryption zone: A special HDFS directory within which all data is encrypted upon
write, and decrypted upon read.

* Each encryption zone is associated with an encryption key that is specified when the
zone is created.

¢ Each file within an encryption zone has a unique encryption key, called the "data
encryption key" (DEK).

¢ HDFS does not have access to DEKs. HDFS DataNodes only see a stream of encrypted
bytes. HDFS stores "encrypted data encryption keys" (EDEKs) as part of the file's
metadata on the NameNode.

¢ Clients decrypt an EDEK and use the associated DEK to encrypt and decrypt data
during write and read operations.

* Ranger Key Management Service (Ranger KMS): An open source key management
service based on Hadoop's KeyPr ovi der API.

46

Hortonworks Data Platform July 21, 2015

For HDFS encryption, the Ranger KMS has three basic responsibilities:

¢ Provide access to stored encryption zone keys.

¢ Generate and manage encryption zone keys, and create encrypted data keys to be
stored in Hadoop.

* Audit all access events in Ranger KMS.

Note: This chapter is intended for security administrators who are interested in
configuring and using HDFS encryption. For more information about Ranger KMS, see

the Ranger KMS Administration Guide.

Figure 13.1. HDFS Encryption Components

DATA ACCESS Ranger KMS

HODFS Client
| DEK EDEK
Kev:r:rlder = > KeyProvider APl
EDEK
Crypto Stream
{r/w with DEK]
EDEK oEks
KeyProvider | g
Encrypted File 'f;::” € |
(attributes - EDEK, IV]
Encryption Zone
(attributes - EZKey ID, version) Name Node
HDFS

(Hadoop Distributed File System)

DATA MANAGEMENT

Role Separation

Access to the key encryption/decryption process is typically restricted to end users. This
means that encrypted keys can be safely stored and handled by HDFS, because the HDFS

admin user does not have access to them.
This role separation requires two types of HDFS administrator accounts:
¢ HDFS service user: the system-level account associated with HDFS (hdf s by default).

¢ HDFS admin user: an account in the hdf s supergroup, which is used by HDFS
administrators to configure and manage HDFS.

2 Important
For clear segregation of duties, we recommend that you restrict use of the
hdf s account to system/interprocess use. Do not provide its password to

47

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_ranger_kms_overview.html

Hortonworks Data Platform July 21, 2015

physical users. A (human) user who administers HDFS should only access HDFS
through an admin user account created specifically for that purpose. For more
information about creating an HDFS admin user, see Creating an HDFS Admin
User.

Other services may require a separate admin account for clusters with HDFS encryption
zones. For service-specific information, see Configuring HDP Services for HDFS Encryption.

13.2. Configuring and Starting the Ranger Key
Management Service (Ranger KMS)

In a typical environment, a security administrator will set up the Ranger Key Management
Service. For information about installing and configuring the Ranger KMS, see the Ranger
KMS Administration Guide.

13.3. Configuring and Using HDFS Data at Rest
Encryption

After the Ranger KMS has been set up and the NameNode and HDFS clients have
been configured, an HDFS administrator can use the hadoop key and hdfs crypto
command-line tools to create encryption keys and set up new encryption zones.

The overall workflow is as follows:

1. Create an HDFS encryption zone key that will be used to encrypt the file-level data
encryption key for every file in the encryption zone. This key is stored and managed by
Ranger KMS.

2. Create a new HDFS folder. Specify required permissions, owner, and group for the
folder.

3. Using the new encryption zone key, designate the folder as an encryption zone.

4. Configure client access. The user associated with the client application needs sufficient
permission to access encrypted data. In an encryption zone, the user needs file/directory
access (through Posix permissions or Ranger access control), as well as access for
certain key operations. To set up ACLs for key-related operations, see the Ranger KMS
Administration Guide.

After permissions are set, Java API clients and HDFS applications with sufficient HDFS and
Ranger KMS access privileges can write and read to/from files in the encryption zone.

13.3.1. Prepare the Environment

HDP supports hardware acceleration with Advanced Encryption Standard New Instructions
(AES-NI). Compared with the software implementation of AES, hardware acceleration
offers an order of magnitude faster encryption/decryption.

To use AES-NI optimization you need CPU and library support, described in the following
subsections.

48

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_hdfs_admin_tools/content/hdfs-encr-appendix.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_hdfs_admin_tools/content/hdfs-encr-appendix.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_hdfs_admin_tools/content/configuring-encryption-for-hdp-services.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_ranger_kms_overview.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_ranger_kms_overview.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_ranger_kms_overview.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_ranger_kms_overview.html

Hortonworks Data Platform July 21, 2015

13.3.1.1. CPU Support for AES-NI optimization

AES-NI optimization requires an extended CPU instruction set for AES hardware
acceleration.

There are several ways to check for this; for example:
$ cat /proc/cpuinfo | grep aes

Look for output with flags and 'aes'.

13.3.1.2. Library Support for AES-NI optimization

You will need a version of the | i bcr ypt 0. so library that supports hardware acceleration,
such as OpenSSL 1.0.1e. (Many OS versions have an older version of the library that does
not support AES-NI.)

A version of the | i bcr ypt 0. so libary with AES-NI support must be installed on HDFS
cluster nodes and MapReduce client hosts — that is, any host from which you issue HDFS or
MapReduce requests. The following instructions describe how to install and configure the
I i bcrypto. so library.

RHEL/CentOS 6.5 or later

On HDP cluster nodes, the installed version of | i bcr ypt 0. so supports AES-NI, but you
will need to make sure that the symbolic link exists:

$ sudo In -s /usr/lib64/libcrypto.so.1.0.1e /usr/lihb64/
libcrypto.so

On MapReduce client hosts, install the openssl - devel package:

$ sudo yuminstall openssl-devel

13.3.1.3. Verifying AES-NI Support

To verify that a client host is ready to use the AES-NI instruction set optimization for HDFS
encryption, use the following command:

hadoop checknative

You should see a response similar to the following:

15/ 08/ 12 13:48:39 | NFO bzi p2. Bzi p2Factory: Successfully |oaded & initialized
nati ve-bzi p2 library systemnative

14/ 12/ 12 13:48:39 INFO zlib. Zl i bFactory: Successfully |loaded & initialized
native-zlib library

Native |ibrary checking

hadoop: true /usr/lib/hadoop/lib/native/libhadoop.so.1.0.0

zlib: true /1ib64/1ibz.so.1
snappy: true /usr/lib64/1ibsnappy.so.1
| z4: true revision: 99

bzi p2: true /1ib64/1ibbz2.so.1
openssl: true /usr/lib64/1ibcrypto.so

49

Hortonworks Data Platform July 21, 2015

If you seet r ue in the openssl row, Hadoop has detected the right version of
I i bcrypt 0. so and optimization will work.

If you see f al se in this row, you do not have the correct version.

13.3.2. Create an Encryption Key

Create a "master" encryption key for the new encryption zone. Each key will be specific to
an encryption zone.

Ranger supports AES/CTR/NoPadding as the cipher suite. (The associated property is listed
under HDFS -> Configs in the Advanced hdfs-site list.)

Key size can be 128 or 256 bits.

Recommendation: create a new superuser for key management. In the following examples,
superuser encr creates the key. This separates the data access role from the encryption
role, strengthening security.

Create an Encryption Key using Ranger KMS (Recommended)
In the Ranger Web Ul screen:
1. Choose the Encryption tab at the top of the screen.

2. Select the KMS service from the drop-down list.

Ranger DAccess Manager @ Encryption o2 keyadmin

Key Management

Select Service: | cli_kms . |

Q
Q Search for your k__ Add New Key
Key Name Cipher Version Attributes Length Created Date Action
sensitivefolder AES/CTR/NoPadding 1 key.acl.name — SensitiveFolder 128 08/06/2015 01:30:44 PM i ﬂ
test AES/CTR/NoPadding 1 key.acl.name = test 128 08/13/2015 01:49:35 PM L= | ﬂ
testkeyfromcli AES/CTR/NoPadding 1 key.acl.name — testkeyfromcli 128 07/24/2015 06:04:36 PM L | E
testkeyfromui AES/CTR/NoPadding 1 key.acl.name —+ testkeyfromui 128 07/24/2015 06:04:16 PM i B
testkeygmi AES/CTR/NoPadding 1 key.acl.name — testkeyGM| 128 08/06/2015 02:02:40 PM @ ﬂ
ki AES/CTR/NoPadding 1 key.aclname —+ tk1 128 08/25/2015 12:22:23 PM |2 ﬂ

To create a new key:
1. Click on "Add New Key":

2. Add a valid key name.

50

Hortonworks Data Platform July 21, 2015

3. Select the cipher name. Ranger supports AES/CTR/NoPadding as the cipher suite.
4. Specify the key length, 128 or 256 bits.

5. Add other attributes as needed, and then save the key.

Ral‘lger UAccess Manager & Encryption s keyadmin

XTSI

Key Detail

Key Name *
Cipher | AES/CTR/NoPadding
Length 128

Description

Attributes Name Value

For information about rolling over and deleting keys, see Using the Ranger Key
Management Service in the Ranger KMS Administration Guide.

o Warning

Do not delete an encryption key while it is in use for an encryption zone. This
will result in loss of access to data in that zone.

Create an Encryption Key using the CLI

The full syntax of the hadoop key cr eat e command is as follows:

[create <keyname> [-cipher <cipher>]
[-size <size>]

[-description <description>]

[-attr <attribute=val ue>]

[- provider <provider>]

[-help]]

Example:

su - encr

hadoop key create <key_name> [-size <nunber-of - bits>]

The default key size is 128 bits. The optional - si ze parameter supports 256-bit keys, and

requires the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File
on all hosts in the cluster. For installation information, see the Ambari Security Guide.

51

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_use_ranger_kms.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_use_ranger_kms.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Security_Guide/content/_distribute_and_install_the_jce.html

Hortonworks Data Platform July 21, 2015

Example:

su - encr

hadoop key create keyl

To verify creation of the key, list the metadata associated with the current user:
hadoop key list -netadata

For information about rolling over and deleting keys, see Using the Ranger Key
Management Service in the Ranger KMS Administration Guide.

O Warning
Do not delete an encryption key while it is in use for an encryption zone. This
will result in loss of access to data in that zone.

13.3.3. Create an Encryption Zone

Each encryption zone must be defined using an empty directory and an existing encryption
key. An encryption zone cannot be created on top of a directory that already contains
data.

Recommendation: use one unique key for each encryption zone.

Use the crypt o cr eat eZone command to create a new encryption zone. The syntax is:
-createZone -keyNane <keyNane> -path <pat h>

where:

» - keyNane: specifies the name of the key to use for the encryption zone.

* - pat h specifies the path of the encryption zone to be created. It must be an empty
directory.

3 Note
The hdf s service account can create zones, but cannot write data unless the
account has sufficient permission.

Recommendation: Define a separate user account for the HDFS administrator,
and do not provide access to keys for this user in Ranger KMS.

Steps:
1. As HDFS administrator, create a new empty directory. For example:
hdfs dfs -nkdir /zone_encr

2. Using the encryption key, make the directory an encryption zone. For example:

52

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_use_ranger_kms.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_use_ranger_kms.html

Hortonworks Data Platform July 21, 2015

hdfs crypto -createZone -keyNane keyl -path /zone_encr
When finished, the NameNode will recognize the folder as an HDFS encryption zone.

3. To verify creation of the new encryption zone, run thecrypt o -1i st Zones command
as an HDFS administrator:

-1i st Zones

You should see the encryption zone and its key. For example:

$ hdfs crypto -listZones
[zone-encr keyl

3 Note

The following property (in the hdf s- def aul t . xim file) causes listZone
requests to be batched. This improves NameNode performance. The
property specifies the maximum number of zones that will be returned in a
batch.

df s. nanenode. | i st. encrypti on. zones. num r esponses

The default is 100.

To remove an encryption zone, delete the root directory of the zone. For example:

hdfs dfs -rm-R /zone_encr

13.3.4. Copy Files from/to an Encryption Zone

To copy existing files into an encryption zone, use a tool like di st cp.

Note: for separation of administrative roles, do not use the hdf s user to create encryption
zones. Instead, designate another administrative account for creating encryption keys and
zones. See Creating an HDFS Admin User for more information.

The files will be encrypted using a file-level key generated by the Ranger Key Management
Service.

DistCp Considerations

Di st Cp is commonly used to replicate data between clusters for backup and disaster
recovery purposes. This operation is typically performed by the cluster administrator, via an
HDFS superuser account.

To retain this workflow when using HDFS encryption, a new virtual path prefix has been
introduced, / . r eser ved/ r aw . This virtual path gives super users direct access to the
underlying encrypted block data in the file system, allowing super users to di st cp data
without requiring access to encryption keys. This also avoids the overhead of decrypting
and re-encrypting data. The source and destination data will be byte-for-byte identical,
which would not be true if the data were re-encrypted with a new EDEK.

53

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_hdfs_admin_tools/content/hdfs-encr-appendix.html

Hortonworks Data Platform July 21, 2015

O Warning
When using /. reserved/ raw to di st cp encrypted data, make sure you
preserve extended attributes with the - px flag. This is necessary because
encrypted attributes such as the EDEK are exposed through extended
attributes; they must be preserved to be able to decrypt the file. For example:

sudo -u encr hadoop distcp -px hdfs:/clusterl-
nanenode: 50070/ . reserved/ raw apps/ enczone hdfs:/cl uster2-
narmenode: 50070/ . reserved/ raw apps/ enczone

This means that if the di st cp operation is initiated at or above the encryption
zone root, it will automatically create a new encryption zone at the destination
(if one does not already exist).

Recommendation: To avoid potential mishaps, first create identical encryption
zones on the destination cluster.

Copying between encrypted and unencrypted locations

By default, di st cp compares file system checksums to verify that data was successfully
copied to the destination.

When copying between an unencrypted and encrypted location, file system checksums
will not match because the underlying block data is different. In this case, specify the -
ski pcrccheck and - updat e flags to avoid verifying checksums.

13.3.5. Read and Write Files from/to an Encryption Zone

Clients and HDFS applications with sufficient HDFS and Ranger KMS permissions can read
and write files from/to an encryption zone.

Overview of the client write process:
1. The client writes to the encryption zone.

2. The NameNode checks to make sure that the client has sufficient write access
permissions. If so, the NameNode asks Ranger KMS to create a file-level key, encrypted
with the encryption zone master key.

3. The Namenode stores the file-level encrypted data encryption key (EDEK) generated by
Ranger KMS as part of the file's metadata, and returns the EDEK to the client.

4. The client asks Ranger KMS to decode the EDEK (to DEK), and uses the DEK to write
encrypted data. Ranger KMS checks for permissions for the user before decrypting EDEK
and producing the DEK for the client.

Overview of the client read process:
1. The client issues a read request for a file in an encryption zone.

2. The NameNode checks to make sure that the client has sufficient read access
permissions. If so, the NameNode returns the file's EDEK and the encryption zone key
version that was used to encrypt the EDEK.

54

Hortonworks Data Platform July 21, 2015

3. The client asks Ranger KMS to decrypt the EDEK. Ranger KMS checks for permissions to
decrypt EDEK for the end user.

4. Ranger KMS decrypts and returns the (unencrypted) data encryption key (DEK).
5. The client uses the DEK to decrypt and read the file.

The preceding steps take place through internal interactions between the DFSClient, the
NameNode, and Ranger KMS.

In the following example, the / zone_encr directory is an encrypted zone in HDFS.

To verify this, use the crypt o -1 i st Zones command (as an HDFS administrator). This
command lists the root path and the zone key for the encryption zone. For example:

hdfs crypto -1istZones
/zone_encr keyl

Additionally, the / zone_encr directory has been set up for read/write access by the hi ve
user:

hdfs dfs -1s /

d;.\./vxr- X- - - - hive hi ve 0 2015-01-11 23:12 /zone_encr
The hi ve user can, therefore, write data to the directory.

The following examples use the copyFr onLocal command to move a local file into HDFS.

[hi ve@®l ue ~]# hdfs dfs -copyFroniocal web.log /zone_encr

[hive@l ue ~]# hdfs dfs -Is /zone_encr

Found 1 itens

STWr--T-- 1 hive hive 1310 2015-01-11 23:28 /zone_encr/web. | og

The hi ve user can read data from the directory, and can verify that the file loaded into
HDFS is readable in its unencrypted form.

[hi ve@l ue ~]# hdfs dfs -copyToLocal /zone_encr/web. | og read.| og
[hive@lue ~]1# diff web.log read. | og

3 Note

For more information about accessing encrypted files from Hive and other
components, see Configuring HDP Services for HDFS Encryption.

Users without access to KMS keys will be able to see file names (via the -Is command), but
they will not be able to write data or read from the encrypted zone. For example, the hdf s
user lacks sufficient permissions, and cannot access the datain/ zone_encr:

[hdf s@l ue ~]# hdfs dfs -copyFromLocal install.log /zone_encr
copyFromLocal : Perm ssion deni ed: user=hdfs, access=EXECUTE, i node="/
zone_encr": hi ve: hi ve: dr wxr - x- - -

[hdf s@l ue ~]# hdfs dfs -copyToLocal /zone_encr/web.|og read.| og
copyToLocal : Permi ssion deni ed: user=hdfs, access=EXECUTE, i node="/
zone_encr": hi ve: hi ve: dr wxr - x- - -

55

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_hdfs_admin_tools/content/configuring-encryption-for-hdp-services.html

Hortonworks Data Platform July 21, 2015

13.3.6. Delete Files from an Encryption Zone

You cannot move data from an Encryption Zone to a global Trash bin outside of the
encryption zone.

To delete files from an encryption zone, use one of the following approaches:

1. When deleting the file via CLI, use the - ski pTr ash option. For example:
hdfs dfs -rm/zone_name/fil el -skipTrash

2. When deleting the file via CLI, use the - ski pTr ash option. For example:
hdfs dfs -rm/zone_name/fil el -skipTrash

3. (Hive only) Use PURGE, as in DROP TABLE ... PURCE. This skips the Trash bin even if
the trash feature is enabled.

13.4. Configuring HDP Services for HDFS
Encryption

The following HDP components support HDFS data at rest encryption:
* Hive

* HBase

* Sqoop

* YARN

* MapReduce

* Oozie

* WebHDFS

The following components do not currently support HDFS data at rest encryption:
* Hive on Tez

e Spark

* HDP Search

e Storm

* Accumulo

* Falcon

The remainder of this section describes scenarios and access considerations for accessing
HDFS-encrypted files from supporting HDP components.

56

Hortonworks Data Platform July 21, 2015

13.4.1. Hive

Recommendation: Store Hive data in an HDFS path called / apps/ hi ve.

13.4.1.1. Configuring Hive Tables for HDFS Encryption

Before enabling encryption zones, decide whether to store your Hive tables across one
zone or multiple encryption zones.

Single Encryption Zone

To configure a single encryption zone for your entire Hive warehouse:
1. Rename / apps/ hi ve to/ apps/ hi ve-ol d

2. Create an encryption zone at/ apps/ hi ve

3. di st cp all of the data from / apps/ hi ve- ol d to/ apps/ hi ve.

To configure the Hive scratch directory (hi ve. exec. scr at chdi r) so that it resides inside
the encryption zone:

1. Set the directory to / apps/ hi ve/ t np.
2. Make sure that the permissions for / apps/ hi ve/t np are set to 1777.
Multiple Encryption Zones

To access encrypted databases and tables with different encryption keys, configure multiple
encryption zones.

For example, to configure two encrypted tables, ez1. db and ez2. db, in two different
encryption zones:

1. Create two new encryption zones, / apps/ hi ve/ war ehouse/ ez1. db and / apps/
hi ve/ war ehouse/ ez2. db.

2. Load data into Hive tables ez1. db and ez 2. db as usual, using LOAD statements. (For
additional considerations, see "Loading Data into an Encrypted Table.")

13.4.1.2. Loading Data into an Encrypted Table

By design, HDFS-encrypted files cannot be moved or loaded from one encryption zone
into another encryption zone, or from an encryption zone into an unencrypted directory.
Encrypted files can only be copied.

Within an encryption zone, files can be copied, moved, loaded, and renamed.
Recommendations:

* When loading unencrypted data into encrypted tables (e.g.,, LOAD DATA | NPATH), we
recommend placing the source data (to be encrypted) into a landing zone within the
destination encryption zone.

57

Hortonworks Data Platform July 21, 2015

* An attempt to load data from one encryption zone into another will result in a copy
operation. Di st cp will be used to speed up the process if the size of the files being
copied is higher than the value specified by the hi ve. exec. copyfi |l e. maxsi ze
property. The default limit is 32 MB.

Here are two approaches for loading unencrypted data into an encrypted table:
* To load unencrypted data into an encrypted table, use the LOAD DATA ... statement.

If the source data does not reside inside the encryption zone, the LOAD statement will
result in a copy. If your data is already inside HDFS, though, you can use di st cp to
speed up the copying process.

* If the data is already inside a Hive table, create a new table with a LOCATI ONinside an
encryption zone, as follows:

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT *
FROM <unencrypt ed_t abl e>

3 Note
The location specified in the CREATE TABLE statement must be within
an encryption zone. If you create a table that points LOCATI ONto an
unencrypted directory, your data will not be encrypted. You must copy your
data to an encryption zone, and then point LOCATI ONto that encryption
zone.

If your source data is already encrypted, use the CREATE TABLE statement. Point
LOCATI ONto the encrypted source directory where your data resides:

CREATE TABLE encrypted_table [STORED AS] LCCATION ... AS SELECT *
FROM <encrypt ed_source_di rectory>

This is the fastest way to create encrypted tables.

13.4.1.3. Encrypting Other Hive Directories

* LOCALSCRATCHDI R: The MapJoin optimization in Hive writes HDFS tables to a local
directory and then uploads them to distributed cache. To enable encryption, either
disable MaplJoin (set hi ve. aut 0. convert.j oi ntof al se) or encrypt the |l ocal
Hive Scratch directory (hi ve. exec. | ocal . scr at chdi r). Performance note: disabling
MaplJoin will result in slower join performance.

 DOANLOADED RESOURCES DI R: Jars that are added to a user session and stored in
HDFS are downloaded to hi ve. downl oaded. r esour ces. di r. If you want these Jar
files to be encrypted, configure hi ve. downl oaded. r esour ces. di r to be part of an
encryption zone. This directory needs to be accessible to the HiveServer2.

* NodeManager Local Directory List: Hive stores Jars and MapJoin files in the
distributed cache, so if you'd like to use MapJoin or encrypt Jars and other
resource files, the YARN configuration property NodeManager Local Directory List
(yar n. nodenmanager . | ocal - di r s) must be configured to a set of encrypted local
directories on all nodes.

58

Hortonworks Data Platform July 21, 2015

Alternatively, to disable MaplJoin, set hi ve. aut 0. convert.jointofal se.

13.4.1.4. Additional Changes in Behavior with HDFS-Encrypted Tables

* Users reading data from read-only encrypted tables must have access to a temp directory
that is encrypted with at least as strong encryption as the table.

» By default, temp datas related to HDFS encryption is written to a staging directory
identified by the hi ve- exec. st agi ngdi r property created in the hi ve-si te. xm
file? associated with the table folder.

* Previously, an | NSERT OVERWRI TE on a partitioned table inherited permissions for
new data from the existing partition directory. With encryption enabled, permissions are
inherited from the table.

* When Trash is enabled, the data file for the table should be moved to the Trash bin — but
if the table is inside an Encryption Zone, this operation is not allowed. For information
about deleting data from encryption zones, see Delete Files from an Encryption Zone.

13.4.2. HBase

HBase stores all of its data under its root directory in HDFS, configured with
hbase. r oot di r. The only other directory that the HBase service will read or write is
hbase. bul kl oad. st agi ng. dir.

On HDP clusters, hbase. r oot di r is typically configured as / apps/ hbase/ dat a, and
hbase. bul kl oad. st agi ng. di r is configured as / apps/ hbase/ st agi ng. HBase data,
including the root directory and staging directory, can reside in an encryption zone on
HDFS.

The HBase service user needs to be granted access to the encryption key in the Ranger
KMS, because it performs tasks that require access to HBase data (unlike Hive or HDFS).

By design, HDFS-encrypted files cannot be bulk-loaded from one encryption zone into
another encryption zone, or from an encryption zone into an unencrypted directory.
Encrypted files can only be copied. An attempt to load data from one encryption zone
into another will result in a copy operation. Within an encryption zone, files can be copied,
moved, bulk-loaded, and renamed.

13.4.2.1. Recommendations

* Make the parent directory for the HBase root directory and bulk load staging directory
an encryption zone, instead of just the HBase root directory. This is because HBase bulk
load operations need to move files from the staging directory into the root directory.

* In typical deployments, / apps/ hbase can be made an encryption zone.

* Do not create encryption zones as subdirectories under / apps/ hbase, because HBase
may need to rename files across those subdirectories.

* The landing zone for unencrypted data should always be within the destination
encryption zone.

59

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_hdfs_admin_tools/content/config-use-hdfs-encr.html#delete-files-from-ez

Hortonworks Data Platform July 21, 2015

13.4.2.2. Steps

On a cluster without HBase currently installed:
1. Create the / apps/ hbase directory, and make it an encryption zone.
2. Configure hbase. r oot di r =/ apps/ hbase/ dat a.

3. Configure hbase. bul kl oad. st agi ng. di r =/ apps/ hbase/ st agi ng.

On a cluster with HBase already installed, perform the following steps:

1. Stop the HBase service.

2. Rename the / apps/ hbase directory to / apps/ hbase-t np.

3. Create an empty / apps/ hbase directory, and make it an encryption zone.

4. Di st Cp - skipcrccheck -updat e all data from/ apps/ hbase-t np to/ apps/
hbase, preserving user-group permissions and extended attributes.

5. Start the HBase service and verify that it is working as expected.

6. Remove the / apps/ hbase- t np directory.

13.4.2.3. Changes in Behavior after HDFS Encryption is Enabled

The HBase bulk load process is a MapReduce job that typically runs under the user who
owns the source data. HBase data files created as a result of the job are then bulk loaded
in to HBase RegionServers. During this process, HBase RegionServers move the bulk-loaded
files from the user's directory and move (rename) the files into the HBase root directory

(/ apps/ hbase/ dat a). When data at rest encryption is used, HDFS cannot do a rename
across encryption zones with different keys.

Workaround: run the MapReduce job as the hbase user, and specify an output directory
that resides in the same encryption zone as the HBase root directory.

13.4.3. Sqoop

Following are considerations for using Sqoop to import or export HDFS-encrypted data.

13.4.3.1. Recommendations

* For Hive:

Make sure that you are using Sqoop with the - -t ar get - di r parameter setto a
directory that is inside the Hive encryption zone. Specify the -D option after sqoop
import.

For example:

sqoop inport \

60

Hortonworks Data Platform July 21, 2015

-D sqoop.test.inport.rootDir=<root-directory>\
--target-dir <directory-inside-encryption-zone> \
<addi ti onal - ar gunent s>

For append or incremental import:

Make sure that the sqoop. t est. i nport.root Di r property points to the encryption
zone specified in the - - t ar get - di r argument.

For HCatalog:

No special configuration is required.

13.4.4. MapReduce on YARN

Recommendation: Make / apps/ hi st ory a single encryption zone. History files are
moved between the i nt er nedi at e and done directories, and HDFS encryption will not
allow you to move encrypted files across encryption zones.

13.4.4.1. Steps

On a cluster with MapReduce over YARN installed, create the / apps/ hi st ory directory
and make it an encryption zone.

If / apps/ hi st ory already exists and is not empty:

1.

2.

3.

4.

5.

Create an empty / apps/ hi st or y-t np directory

Make / apps/ hi st ory-t np an encryption zone

Copy (di st cp) all data from / apps/ hi st ory into/ apps/ hi story-tnmp
Remove / apps/ hi story

Rename / apps/ hi story-tnpto/apps/ hi story

13.4.5. Oozie

13.4.5.1. Recommendations

A new Oozie administrator role (00zi e- adm n) has been created in HDP 2.3.

This role enables role separation between the Oozie daemon and administrative tasks. Both
the 00zi e- admi n role and the 00zi e role must be specified in the adni nuser s. t xt

file. This file is installed in HDP 2.3 with both roles specified. Both are also defined in Ambari
2.1 as well. Modification is only required if administrators choose to change the default
administrative roles for Oozie.

If o0zi e- adm n is used as the Oozie administrator user in your cluster, then the role is
automatically managed by ambari.

61

Hortonworks Data Platform July 21, 2015

If you plan to create an Oozie admin user other than oozi e- admni n, add the chosen
username to adm nuser s. t xt under the $00ZI E_HOVE/ conf directory.

Here is a sample adni nusers. t xt file:

Li censed to the Apache Software Foundati on (ASF) under one
or nmore contributor |icense agreenents. See the NOTICE file
distributed with this work for additional infornation
regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the

"Li cense"); you may not use this file except in conpliance
with the License. You nay obtain a copy of the License at

http://ww. apache. org/l i censes/ LI CENSE- 2. 0

Unl ess required by applicable law or agreed to in witing, software

di stri buted under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific | anguage governi ng perm ssions and
limtations under the License.

Users shoul d be set using follow ng rul es:

One user nane per line
Enpty lines and lines starting with '# are ignored

HOHOH R HHHHH R HH

oozi e
00zi e- adm n

13.4.6. WebHDFS

13.4.6.1. Recommendations

WebHDFS is supported for writing and reading files to and from encryption zones.
13.4.6.1.1. Steps

To access encrypted files via WebHDFS, complete the following steps:

1. To enable WebHDFS in hdf s-si t e. xm , set the df s. webhdf s. enabl ed property to
true:

<property>
<nanme>df s. webhdf s. enabl ed</ nane>
<val ue>t rue</ val ue>

</ property>

2. Make sure that you have separate HDFS administrative and service users, as described in
Creating an HDFS Admin User.

3. KMS supports a blacklist and a whitelist for key access (through kns- acl s. xm).
By default the hdf s service user is included in the blacklist for decrypt_eek operations.

To support WebHDFS, the HDFS service user must not be on the key access blacklist.
Remove the HDFS service user from the blacklist:

62

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_hdfs_admin_tools/content/hdfs-encr-appendix.html

Hortonworks Data Platform July 21, 2015

a. To edit the blacklist using Ambari, go to Ranger KMS -> Configs, and search for
"blacklist" or open the Advanced dbks-site list.

b. Remove hdf s from the hadoop. kns. bl ackl i st . DECRYPT_EEK property:

® HDFS Summary = Configs Service Actions ~

© MapReduce2

© YARN Group Ranger KMS Default (4) | -~ Manage Config Groups blacklist e -
0 Tez
admin m admin m admin | Kl admin
© Hive aboutamonthago | aboutamonth ago | about a month age | about a month ago
HDP-2.3 HDP-2.3 HDP-2.3 HDP-2.3
© HBase a
L Pig V4| « admin authored on Fri, Jul 24, 2015 18:00 Save
@ Oozie
© ZooKeeper ¥ Advanced dbks-site
@ Storm
A Ambari Metrics B hadoop.kms.blacklist. hdfs o C
DECRYPT_EEK
© Kafka
0 Kerberos
© Knox
© Ranger
Ranger KMS
Actions ~

¢. Restart Ranger KMS.

4. The HDFS service user must have GENERATE_EEK and DECRYPT_EEK permissions. To
add the permissions using the Ranger Web U], select the Access Manager tab-> Resource
Based Policies (the default Access Manager view). Select the key store, select the policy,
and click the edit icon. In the Permissions column click the edit icon and check the boxes
for GenerateEEK and DecryptEEK. Then click Save.

Ranger UAccess Manager @ Encryption t keyadmin

Create Policy

Policy Details :

Policy Name * hdfs-sve M_J

Key Name * x *

Description
4
Audit Logging (IR
User and Group Permissions :
Permissions Delegate
Select Group Select User Permissions
Admin
mnie buie . a

63

Hortonworks Data Platform July 21, 2015

13.5.

5. Because the HDFS service user will have access to all keys, the HDFS service user should
not be the administrative user. Specify a different administrative user in hdf s-
site. xm for the administrative user.

For more information about operational tasks using Ranger KMS, see the Ranger KMS
Administration Guide.

Appendix: Creating an HDFS Admin User

To capitalize on the capabilities of HDFS data at rest encryption, you will need two separate
types of HDFS administrative accounts:

* HDFS administrative user: an account in the hdf s supergroup that is used to manage
encryption keys and encryption zones. Examples in this chapter use an administrative
user account named encr .

» HDFS service user: the system-level account traditionally associated with HDFS. By
default this is user hdf s in HDP. This account owns the HDFS DataNode and NameNode
processes.

c Important

This is a system-only account. Physical users should not be given access to this
account.

Complete the following steps to create a new HDFS administrative user.

Note: These steps use sample values for group (oper at or) and user account (opt 1).
1. Create a new group called oper at or .

2. Add a new user (for example, opt 1) to the group.

3. Add principal opt 1@EXAMPLE. COMand create a keytab.

4. Login as opt 1, and do a ki ni t operation.

5. In Ambari, replace the current value of df s. per mi ssi ons. super user gr oup with
the group name “operator”.

6. In Ambari, add hdf s, oper at or todfs. cl uster. adm ni strators:

¥ Advanced hdfs-site

dfs.cluster.administrators hdfs, operator o C

7. Add opt 1 to the KMS blacklist. Set the corresponding property in Ambari:
hadoop. kirs. bl ackl i st . DECRYPT_EEK=opt 1

8. Restart HDFS.

64

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_ranger_kms_overview.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_Ranger_KMS_Admin_Guide/content/ch_ranger_kms_overview.html

Hortonworks Data Platform July 21, 2015

Validation
Make sure the opt 1 account has HDFS administrative access:
hdf s df sadmin -report

Make sure the opt 1 account cannot access encrypted files. For example, if / dat a/ t est/
file.txt isinan encryption zone, the following command should return an error:

hdfs dfs -cat /data/test/file.txt
Additional Administrative User Accounts

If you plan to use HDFS data at rest encryption with YARN, we recommend that you create
a separate administrative user account for YARN administration.

If you plan to use HDFS data at rest encryption with Oozie, refer to the Oozie section of this
chapter.

65

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_hdfs_admin_tools/content/oozie-hdfs-encr.html

Hortonworks Data Platform July 21, 2015

14. Backing Up HDFS Metadata

This chapter focuses on understanding and backing up HDFS metadata.

14.1. Introduction to HDFS Metadata Files and
Directories

HDFS metadata represents the structure of HDFS directories and files in a tree. It also
includes the various attributes of directories and files, such as ownership, permissions,
quotas, and replication factor.

14.1.1. Files and Directories

o Warning

Do not attempt to modify metadata directories or files. Unexpected
modifications can cause HDFS downtime, or even permanent data loss. This
information is provided for educational purposes only.

Persistence of HDFS metadata broadly consist of two categories of files:

fsimage Contains the complete state of the file system at a point in time. Every
file system modification is assigned a unique, monotonically increasing
transaction ID. An f si mage file represents the file system state after all
modifications up to a specific transaction ID.

edits file Contains a log that lists each file system change (file creation, deletion or
modification) that was made after the most recent f si nage.

Checkpointing is the process of merging the content of the most recent f si mage, with all
edi t s applied after that f si nage is merged, to create a new f si nage. Checkpointing
is triggered automatically by configuration policies or manually by HDFS administration
commands.

14.1.1.1. Namenodes

The following example shows an HDFS metadata directory taken from a NameNode.
This shows the output of running the tree command on the metadata directory, which is
configured by setting dfs.namenode.name.dir in hdf s-site. xm .

dat a/ df s/ nanme

current

#i## VERSI ON#

edi ts_0000000000000000001- 0000000000000000007
##4# edi ts_0000000000000000008- 0000000000000000015
edi ts_0000000000000000016- 0000000000000000022
edi ts_0000000000000000023- 0000000000000000029
edi ts_0000000000000000030- 0000000000000000030
edi ts_0000000000000000031- 0000000000000000031
edits_i nprogress_0000000000000000032

H O OH O HH

66

Hortonworks Data Platform

July 21, 2015

fsi mage_0000000000000000030

fsi mage_0000000000000000030. md5
fsi mage_0000000000000000031

fsi mage_0000000000000000031. nmd5
seen_txid

i n_use. | ock

In this example, the same directory has been used for both f si mage and edi t s.
Alternative configuration options are available that allow separating f si mage and edi t s
into different directories. Each file within this directory serves a specific purpose in the

overall scheme of metadata persistence:

VERSI ON Text file that contains the following elements:

layoutVersion

namespacelD/clusterID/
blockpoollD

Version of the HDFS
metadata format.
When you add new
features that require
a change to the
metadata format,
you change this
number. An HDFS
upgrade is required
when the current
HDFS software uses
a layout version that
is newer than the
current one.

Unique identifiers
of an HDFS cluster.
These identifiers
are used to

prevent DataNodes
from registering
accidentally with an
incorrect NameNode
that is part of a
different cluster.
These identifiers
also are particularly
important in

a federated
deployment.
Within a federated
deployment,

there are multiple
NameNodes
working
independently. Each
NameNode serves

a unique portion

of the namespace

67

Hortonworks Data Platform

July 21, 2015

edits_start transaction ID-end
transaction ID

fsimage_end transaction ID

seen_txid

(nanespacel D)
and manages a
unique set of blocks
(bl ockpool I D).
The cl ust er | Dties
the whole cluster
together as a single
logical unit. This
structure is the same
across all nodes in
the cluster.

storageType Always NAME_NODE
for the NameNode,

and never
JOURNAL _NCDE.

cTime Creation time of
file system state.
This field is updated
during HDFS
upgrades.

Finalized and unmodifiable edit log segments. Each of
these files contains all of the edit log transactions in the
range defined by the file name. In an High Availability
deployment, the standby can only read up through

the finalized log segments. The standby NameNode is
not up-to-date with the current edit log in progress.
When an HA failover happens, the failover finalizes the
current log segment so that it is completely caught up
before switching to active.

Contains the complete metadata image up through .
Each f si nage file also has a corresponding .md5 file
containing a MD5 checksum, which HDFS uses to guard
against disk corruption.

Contains the last transaction ID of the last checkpoint
(merge of edi t s into an f si mage) or edit log roll
(finalization of current edi t s_i npr ogr ess and
creation of a new one). This is not the last transaction

ID accepted by the NameNode. The file is not updated
on every transaction, only on a checkpoint or an edit log
roll. The purpose of this file is to try to identify if edi t s
are missing during startup. It is possible to configure

the NameNode to use separate directories for f si mage
and edi t s files. If the edi t s directory accidentally gets
deleted, then all transactions since the last checkpoint
would go away, and the NameNode starts up using
just f si mage at an old state. To guard against this,
NameNode startup also checks seen_t xi d to verify

68

Hortonworks Data Platform July 21, 2015

that it can load transactions at least up through that
number. It aborts startup if it cannot verify the load
transactions.

in_use.lock Lock file held by the NameNode process, used to
prevent multiple NameNode processes from starting up
and concurrently modifying the directory.

14.1.1.2. Journalnodes

In an HA deployment, edi t s are logged to a separate set of daemons called
JournalNodes. A JournalNode's metadata directory is configured by setting
dfs.journalnode.edits.dir. The JournalNode contains a VERSION file, multiple edi ts__
filesandanedits_inprogress_, justlike the NameNode. The JournalNode does not
have f si mage files or seen_t xi d. In addition, it contains several other files relevant to
the HA implementation. These files help prevent a split-brain scenario, in which multiple
NameNodes could think they are active and all try to write edi t s.

committed-txid Tracks last transaction ID committed by a NameNode.

last-promised-epoch Contains the “epoch,” which is a monotonically increasing
number. When a new NameNode, starts as active, it
increments the epoch and presents it in calls to the
JournalNode. This scheme is the NameNode's way of claiming
that it is active and requests from another NameNode,
presenting a lower epoch, must be ignored.

last-writer-epoch Contains the epoch number associated with the writer who
last actually wrote a transaction.

paxos Specifies the directory that temporary files used in the
implementation of the Paxos distributed consensus protocol.
This directory often appears as empty.

14.1.1.3. Datanodes

Although DataNodes do not contain metadata about the directories and files stored in an
HDFS cluster, they do contain a small amount of metadata about the DataNode itself and
its relationship to a cluster. This shows the output of running the tree command on the
DataNode’s directory, configured by setting dfs.datanode.data.dir in hdfs-site.xml.

dat a/ df s/ dat a/
current

BP-1079595417-192. 168. 2. 45- 1412613236271
current

VERSI ON

finalized

subdirO# # # # ### subdirl
bl k_1073741825

bl k_1073741825_1001. net a

| azyPersi st

#HH## rbw

dncp_bl ock_verification.|og.curr
dncp_bl ock_verification.| og. prev
tnp

69

Hortonworks Data Platform

July 21, 2015

VERSI ON
i n_use. | ock

The purpose of these files are as follows:

BP-random integer-NameNode-
IP address-creation time

VERSION

finalized/rbw

lazyPersist

scanner.cursor

Top level directory for datanodes. The naming
convention for this directory is significant and
constitutes a form of cluster metadata. The name

is a block pool ID. “BP” stands for “block pool,” the
abstraction that collects a set of blocks belonging

to a single namespace. In the case of a federated
deployment, there are multiple “BP" sub-directories,
one for each block pool. The remaining components
form a unique ID: a random integer, followed by the IP
address of the NameNode that created the block pool,
followed by creation time.

Text file containing multiple properties, such as
layoutVersion, clusterld and cTime, which is much like
the NameNode and JournalNode. There is a VERSION
file tracked for the entire DataNode as well as a
separate VERSION file in each block pool sub-directory.

In addition to the properties already discussed earlier,
the DataNode’s VERSION files also contain:

storageType st or ageType field is set to
DATA NCDE.

blockpoollD Repeats the block pool ID information
encoded into the sub-directory name.

Both fi nal i zed and r bwcontain a directory structure
for block storage. This holds numerous block files, which
contain HDFS file data and the corresponding .meta
files, which contain checksum information. r bwstands
for “replica being written”. This area contains blocks
that are still being written to by an HDFS client. The
finalized sub-directory contains blocks that are not
being written to by a client and have been completed.

HDFS is incorporating a new feature to support writing
transient data to memory, followed by lazy persistence
to disk in the background. If this feature is in use, then
a lazyPersist sub-directory is present and used for lazy
persistence of in-memory blocks to disk. We'll cover this
exciting new feature in greater detail in a future blog
post.

File to which the "cursor state" is saved.

The DataNode runs a block scanner which periodically
does checksum verification of each block file on disk.

70

Hortonworks Data Platform July 21, 2015

This scanner maintains a "cursor," representing the last
block to be scanned in each block pool slice on the
volume, and called the "cursor state."

in_use.lock Lock file held by the DataNode process, used to prevent
multiple DataNode processes from starting up and
concurrently modifying the directory.

14.1.2. HDFS Commands

You can use the following HDFS commands to manipulate metadata files and directories:

hdfs namenode Automatically saves a new checkpoint at NameNode
startup. As stated earlier, checkpointing is the process
of merging any outstanding edit logs with the latest
f si mage, saving the full state to a new f si mage file,
and rolling edi t s. Rolling edi t S means finalizing the
current edi t s_i nprogr ess and starting a new one.

hdfs dfsadmin -safemode enter, Saves a new checkpoint (similar to restarting

hdfs dfsadmin -saveNamespace NameNode) while the NameNode process remains
running. The NameNode must be in safe mode, and all
attempted write activity fails while this command runs.

hdfs dfsadmin -rollEdits Manually rolls edi t s. Safe mode is not required.

This can be useful if a standby NameNode is lagging
behind the active NameNode and you want it to get
caught up more quickly. The standby NameNode can
only read finalized edit log segments, not the current in
progress edi t s file.

hdfs dfsadmin -fetchimage Downloads the latest f si mage from the NameNode.
This can be helpful for a remote backup type of
scenario.

14.1.2.1. Configuration Properties

dfs.namenode.name.dir Specifies where on the local filesystem the DFS name
node stores the name table (f si mage). If thisis a
comma-delimited list of directories then the name table
is replicated in all of the directories, for redundancy.

dfs.namenode.edits.dir Specifies where on the local filesystem the DFS
name node stores the transaction (edi t s) file.
If this is a comma-delimited list of directories, the
transaction file is replicated in all of the directories, for
redundancy. The default value is set to the same value
as df s. namenode. nane. di r.

dfs.namenode.checkpoint.period Specifies the number of seconds between two periodic
checkpoints.

71

Hortonworks Data Platform

July 21, 2015

dfs.namenode.checkpoint.txns

The standby creates a checkpoint of the namespace
every df s. namenode. checkpoi nt. t xns
transactions, regardless of whether

df s. nanenode. checkpoi nt . peri od has expired.

dfs.namenode.checkpoint.check.pesipetifies how frequently to query for the number of un-

checkpointed transactions.

dfs.namenode.num.checkpoints.retsfreedies the number of image checkpoint files to be

retained in storage directories. All edit logs necessary
to recover an up-to-date namespace from the oldest
retained checkpoint are also retained.

dfs.namenode.num.extra.edits.retafpedifies the number of extra transactions which are

retained beyond what is minimally necessary for a NN
restart. This can be useful for audit purposes or for an
HA setup where a remote Standby Node might have
been offline and need to have a longer backlog of
retained edi t s to start again.

dfs.namenode.edit.log.autoroll. mulijpdiefich nettesidin active namenode rolls its own

edit log. The actual threshold (in number of

edi t s) is determined by multiplying this value by
dfs.namenode.checkpoint.txns. This prevents extremely
large edit files from accumulating on the active
namenode, which can cause timeouts during namenode
start-up and pose an administrative hassle. This
behavior is intended as a fail-safe for when the standby
fails to roll the edit log by the normal checkpoint
threshold.

dfs.namenode.edit.log.autoroll.chefkéaifesahmstime in milliseconds that an active

dfs.datanode.data.dir

namenode checks if it needs to roll its edit log.

Determines where on the local filesystem an DFS data
node should store its blocks. If this is a comma-delimited
list of directories, then data is stored in all named
directories, typically on different devices. Directories
that do not exist are ignored. Heterogeneous storage
allows specifying that each directory resides on a
different type of storage: DI SK, SSD, ARCHI VE or
RAM DI SK.

14.2. Backing Up HDFS Metadata

You can backup of HDFS metadata without taking down either HDFS or the NameNodes.

14.2.1. Get Ready to Backup the HDFS Metadata

» Regardless of the solution, a full, up-to-date continuous backup of the namespace is not
possible. Some of the most recent data is always lost. HDFS is not an Online Transaction

72

Hortonworks Data Platform July 21, 2015

Processing (OLTP) system. Most data can be easily recreated if you re-run Extract,
Transform, Load (ETL) or processing jobs.

* Normal NameNode failures are handled by the Standby NameNode. Doing so creates a
safety-net for the very unlikely case where both master NameNodes fail.

* In the case of both NameNode failures, you can start the NameNode service with the
most recent image of the namespace.

* Name Nodes maintain the namespace as follows:

* Standby NameNodes keep a namespace image in memory based on edi t s available in
a storage ensemble in Journal Nodes.

¢ Standby NameNodes make a namespace checkpoint and saves a f si mage_* to disk.
¢ Standby NameNodes transfer the f si nage to the primary NameNodes using HTTP.
Both NameNodes write f si mages to disk in the following sequence:
* NameNodes write the namespace to a file f si mage. ckpt _* on disk.
* NameNodes creates a f si nage_*. nu5 file.
* NameNodes moves the file f si mage. ckpt _* tof si nage_. *.
The process by which both NameNodes write f si mages to disk ensures that:

* The most recent namespace image on disk in a f si mage_* file is on the standby
NameNode.

* Anyf si mage_* file on disk is finalized and does not receive updates.

14.2.2. Perform a Backup the HDFS Metadata

Use the following procedure to backup HDFS metadata without affecting the availability of
NameNode:

1. Make sure the Standby NameNode checkpoints the namespace to f si nage_ once per
hour.

2. Deploy monitoring on both NameNodes to confirm that checkpoints are triggering
regularly. This helps reduce the amount of missing transactions in the event that you
need to restore from a backup containing only f si mage files without subsequent edit
logs. It is good practice to monitor this anyway, because huge uncheckpointed edit logs
can cause long delays after a NameNode restart while it replays those transactions.

3. Backup the most recent “f si mage_*" and “f si mage_*. nd5"” from the standby
NameNode periodically. Try to keep the latest version of the file on another machine in
the cluster.

73

	Hortonworks Data Platform
	Table of Contents
	1. HDFS Administration
	1.1. Configuring ACLs on HDFS
	1.2. Using CLI Commands to Create and List ACLs
	1.3. ACL Examples
	1.4. ACLS on HDFS Features
	1.5. Use Cases for ACLs on HDFS

	2. Archival Storage
	2.1. Introduction
	2.2. HDFS Storage Types
	2.3. Storage Policies: Hot, Warm, and Cold
	2.4. Configuring Archival Storage

	3. Centralized Cache Management in HDFS
	3.1. Overview
	3.2. Caching Use Cases
	3.3. Caching Architecture
	3.4. Caching Terminology
	3.5. Configuring Centralized Caching
	3.6. Using Cache Pools and Directives

	4. Configuring HDFS Compression
	5. Configuring Rack Awareness On HDP
	5.1. Create a Rack Topology Script
	5.2. Add the Topology Script Property to core-site.xml
	5.3. Restart HDFS and MapReduce
	5.4. Verify Rack Awareness

	6. Customizing HDFS
	6.1. Customize the HDFS Home Directory
	6.2. Set the Size of the NameNode Edits Directory

	7. Hadoop Archives
	7.1. Introduction
	7.2. Hadoop Archive Components
	7.3. Creating a Hadoop Archive
	7.4. Looking Up Files in Hadoop Archives
	7.5. Hadoop Archives and MapReduce

	8. JMX Metrics APIs for HDFS Daemons
	9. Memory as Storage (Technical Preview)
	9.1. Introduction
	9.2. HDFS Storage Types
	9.3. The LAZY_PERSIST Memory Storage Policy
	9.4. Configuring Memory as Storage

	10. Running DataNodes as Non-Root
	10.1. Introduction
	10.2. Configuring DataNode SASL

	11. Short Circuit Local Reads On HDFS
	11.1. Prerequisites
	11.2. Configuring Short-Circuit Local Reads on HDFS
	11.3. Short-Circuit Local Read Properties in hdfs-site.xml

	12. WebHDFS Administrator Guide
	13. HDFS "Data at Rest" Encryption
	13.1. HDFS Encryption Overview
	13.2. Configuring and Starting the Ranger Key Management Service (Ranger KMS)
	13.3. Configuring and Using HDFS Data at Rest Encryption
	13.3.1. Prepare the Environment
	13.3.1.1. CPU Support for AES-NI optimization
	13.3.1.2. Library Support for AES-NI optimization
	13.3.1.3. Verifying AES-NI Support

	13.3.2. Create an Encryption Key
	13.3.3. Create an Encryption Zone
	13.3.4. Copy Files from/to an Encryption Zone
	13.3.5. Read and Write Files from/to an Encryption Zone
	13.3.6. Delete Files from an Encryption Zone

	13.4. Configuring HDP Services for HDFS Encryption
	13.4.1. Hive
	13.4.1.1. Configuring Hive Tables for HDFS Encryption
	13.4.1.2. Loading Data into an Encrypted Table
	13.4.1.3. Encrypting Other Hive Directories
	13.4.1.4. Additional Changes in Behavior with HDFS-Encrypted Tables

	13.4.2. HBase
	13.4.2.1. Recommendations
	13.4.2.2. Steps
	13.4.2.3. Changes in Behavior after HDFS Encryption is Enabled

	13.4.3. Sqoop
	13.4.3.1. Recommendations

	13.4.4. MapReduce on YARN
	13.4.4.1. Steps

	13.4.5. Oozie
	13.4.5.1. Recommendations

	13.4.6. WebHDFS
	13.4.6.1. Recommendations
	13.4.6.1.1. Steps

	13.5. Appendix: Creating an HDFS Admin User

	14. Backing Up HDFS Metadata
	14.1. Introduction to HDFS Metadata Files and Directories
	14.1.1. Files and Directories
	14.1.1.1. Namenodes
	14.1.1.2. Journalnodes
	14.1.1.3. Datanodes

	14.1.2. HDFS Commands
	14.1.2.1. Configuration Properties

	14.2. Backing Up HDFS Metadata
	14.2.1. Get Ready to Backup the HDFS Metadata
	14.2.2. Perform a Backup the HDFS Metadata

