Hortonworks Data Platform
Spark QuickStart Guide

(July 21, 2015)

http://docs.cloudera.com

Hortonworks Data Platform July 21, 2015

Hortonworks Data Platform: Spark QuickStart Guide
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 4.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform July 21, 2015

Table of Contents

IS [0 oo Yo [F Tt o Y o S 1
2. Prer@QUISITESiiiiieieiiiiie et e e ettt e e e e e e e e e ee e e e e e e e e e e a e e e e e e e e e nernn e e e aaaaes 4
3. INStalliNG SPATK . 5
4. Validating SPATK ...eeeeeeeeiiiieiiieititeeeeeeeeeteeeaeeaeaeaeeeaeeeeeeeaeeeeeesessessssessssssssssssssssssssssssnnsnsnnes 9
4.1. Run the Spark Pi @Xamplecoouuuuiiiiiiiie e e 9
4.2. Run the WordCount EXampleccoiiiiiiiiiiiiiiiii e 10
5. Installing Spark with Kerberos ... 13
5.1. Accessing the Hive Metastore in Secure Modeccoooiiiiiiiiiiiiiiie 14
o 21T A o = Lox ol =TSP 15
6.1. Using SQLContext and HiveCoNteXtcouvuuiieiiieeiiciiiciee e e eeeeaeae 15
6.2. Guidelines for Determining Spark Memory Allocationccccccvvveiiiiiiiiininnnn. 15
6.3. Configuring YARN Memory Allocation for Sparkueeeeeveeeieeeieieneeeeennnns 16
7. Accessing ORC Files from SParkeeeeeeeiimimiieiiiiiiieiieieeeee ettt 18
8. USING Spark With HDFSeuiiiiiiiiiiiiiiiiiiiiiititieieiaeeeeaeeeeeeeeeeeeeseseeesesesesesssssesssennsnsnsnnes 20
9. TroubleshOOTING SPATKuuuuiuiiiiiiiitieieie ettt e e eeeeeeeseeeeeeeeenesnennennnnee 21
10. Appendix A: Upgrading from the Spark Tech Previewccccccceveiiiiiiiiiiiiiiiiiienenenn. 23

Hortonworks Data Platform July 21, 2015

List of Tables

1.1. Spark Support in HDP, AMDaricooiiiiiiiiiie e e e e 2
1.2. Spark Feature SUPPOIt DY VErSIONuuuuuiuiuiiiiiiiiiiiiiiiiiiieieeeeaeeeeeneseeeeeeseeaeeeeeeeeesenes 2
2.1. Prerequisites for running Spark 1.3.1 .. oo 4

Hortonworks Data Platform July 21, 2015

1. Introduction

Hortonworks Data Platform supports Apache Spark 1.3.1, a fast, large-scale data processing
engine.

Deep integration of Spark with YARN allows Spark to operate as a cluster tenant alongside
other engines such as Hive, Storm, and HBase, all running simultaneously on a single data
platform. YARN allows flexibility: you can choose the right processing tool for the job.
Instead of creating and managing a set of dedicated clusters for Spark applications, you can
store data in a single location, access and analyze it with multiple processing engines, and
leverage your resources. In a modern data architecture with multiple processing engines
using YARN and accessing data in HDFS, Spark on YARN is the leading Spark deployment
mode.

Spark Features

Spark on HDP supports the following features:

» Spark Core

* Spark on YARN

» Spark on YARN on Kerberos-enabled clusters

* Spark History Server

* Spark MLLib

* Support for Hive 0.13.1, including the col | ect _| i st UDF

The following features are available as technical previews:
» Spark DataFrame API

* ORC file support

* Spark SQL

* Spark Streaming

 Spark SQL Thrift Server

» Dynamic Executor Allocation

The following features and tools are not officially supported in this release:
* ML Pipeline API
* SparkR

* Spark Standalone

Hortonworks Data Platform July 21, 2015

* GraphX

* iPython

e Zeppelin

Spark on YARN uses YARN services for resource allocation, running Spark Executors in

YARN containers. Spark on YARN supports workload management and Kerberos security
features. It has two modes:

* YARN-Cluster mode, optimized for long-running production jobs.
* YARN-Client mode, best for interactive use such as prototyping, testing, and debugging.
Spark Shell runs in YARN-Client mode only.

The following tables summarize Spark versions and feature support across HDP and Ambari
versions.

Table 1.1. Spark Support in HDP, Ambari

HDP Ambari Spark
224 2.0.1 1.21
2.2.6 2.1.1 1.2.1
2.2.8 2.1.1 1.3.1
229 2.1.1 1.3.1
2.3.0 211 1.3.1

Table 1.2. Spark Feature Support by Version

Feature 1.2.1 1.3.1
Spark Core Yes Yes
Spark on YARN Yes Yes
Spark on YARN, Kerberos-enabled |Yes Yes
clusters

Spark History Server Yes Yes
Spark MLLib Yes Yes
Hive 0.1.3, including Yes

collect_list UDF
ML Pipeline API (PySpark)

DataFrame API TP
ORC Files TP
Spark SQL TP TP
Spark Streaming TP TP
Spark SQL Thrift Server TP
Dynamic Executor Allocation TP
SparkR

Spark Standalone

GraphX

TP: Tech Preview

Hortonworks Data Platform July 21, 2015

If you are evaluating custom Spark builds or builds from Apache, please see the
Troubleshooting Spark section.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_spark-quickstart/content/ch_troubleshooting-spark-quickstart.html

Hortonworks Data Platform July 21, 2015

2. Prerequisites

Before installing Spark, make sure your cluster meets the following prerequisites.

Table 2.1. Prerequisites for running Spark 1.3.1

Prerequisite Description
Cluster Stack Version * HDP 2.2.6 or later
(Optional) Ambari * Version 2.1 or later
Software dependencies ¢ Spark requires HDFS and YARN
* PySpark requires Python to be installed on all nodes

3 Note

If you installed the tech preview, save any configuration changes you made to
the tech preview environment. Install Spark, and then update the configuration
with your changes.

Hortonworks Data Platform July 21, 2015

3. Installing Spark

To install Spark manually, see "Installing and Configuring Apache Spark" in the Manual
Install Guide.

To install Spark on a Kerberized cluster, first read Installing Spark with Kerberos (the next
topic in this Quick Start Guide).

The remainder of this section describes how to install Spark using Ambari. (For general
information about installing HDP components using Ambari, see Adding a Service in the
Ambari Documentation Suite.)

The following diagram shows the Spark installation process using Ambari.

Agsign

nodes for Spark
Hadoop Add Select Spark I-Hf

Admin Service Spark History Ready

Server &
Spark Cliant

To install Spark using Ambari, complete the following steps:
1. Choose the Ambari "Services" tab.

In the Ambari "Actions" pulldown menu, choose "Add Service." This will start the Add
Service Wizard. You'll see the Choose Services screen.

Select "Spark", and click "Next" to continue.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_spark-quickstart/content/ch_installing-kerb-spark-quickstart.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Users_Guide/content/_adding_a_service_to_your_hadoop_cluster.html

Hortonworks Data Platform July 21, 2015

Choose Services

Choose which services you want to install on your cluster,

o Service Version Descriplion
& HOFS 27123 Apache Hadoop Distributed File System

& YARN + MapReduce? 271,23 Apache Hadoop NextGen MapReduce (YARN)

o Tez 07023 Tezisthe next generation Hadoop Cuery Processing framewsrk writhen on top of
YARN.

& Hive 1.2.023 Data wanshouse system for ad-hoc queries & analysis of large datasets and table &
slorage management service

HBase 1.1.023 A MNon-relational distributed databasa, plus Phoanb, a high performancs SCL layer for
How lEtency appioations,

i Pig 015023 Scripling platfonm for anahyzing large datasels

™ Saoop 14823 Tool for transfarring bulk data batwean Apacha Hadoop and structured data stores
swch ag relational databasas

& Dozie 42023 System for workliow coordination and execution of Apache Hadoop jobs. This also
incliudas the installation of the optional Oozie Web Consoba which relias on and will
install the ExtJS Library,

™ ZookKpeper 34,823 Centralized service which provides highly reliable distributed coordination

i Falcon 0.6.1 Data managerment and processing platiorm

™ Storm 0.10.0 Apache Hadoop Stream processing framework

Flume 1.5223 Adistributed servics for collacting, aggregating, and moving large amounts of
streaming data inte HOFS

 Accumulo 1.7.0.23 Aobust, scalable, high performance distributed keyfvalue stora.

& Ambari Matrics 0.1.0 A system for metrics collection that provides storage and ratrieval capability for metrics
collectisd from the cluster

o Atlas 05023 Atlas Metadata and Governance platfonm

o Kafka 08223 Ahigh-throughput distributed messaging system

Ko 06023 Provides a single point of authentication and access for Apachs Hadoop senvices ina
chuster

= Mahout 10023 Project of the Apache Softwane Foundation to produce free implementations of

distributed or otherwise scatable maching leaming algarithms fecused primarily in the
areas of collaborative filtering, clustering and classification

Slider 080023 Aframework for deploying, managing and monitoring existing distributed applications
an YARN,
™ Spark 13123 Apache Spark is a fast and general engine for large-scale dala processing.

2. On the Assign Masters screen, choose a node for the Spark History Server.

Click "Next" to continue.

Hortonworks Data Platform July 21, 2015

Add Service Wizard
iy Assign Masters
T gt o i i
rsson: [papinron T o et 37 08, 1 e
iyt | 768, 1o 1| I EE
e e [T
Foscroabisager, | hept 078, e 1] T
ViekHCat Server. P Ie = 22
Hebeasons. | hop1i AT a8, o) | nopRbac 1.8 68, 1 cores)
s [roinzon e 7
orasenes, | nopimnzon T |
ooaeper arvwr | nop 708, e 7]
ooKoeper arve | popic 20, tcows) 1]
Zoooeper Saevr, | nepdi (1808, ey 7]
‘Spark Hatory Server. A7 G8, 1 cores) J
L] ==

3. On the Assign Slaves and Clients screen, specify the machine(s) that will run Spark clients.

Click "Next" to continue.

Add Service Wizard

Assign Slaves and Clients

Host i | e ot | none | ore
o Oucatioce [rs— Connt

ropice Outatioc [— Gt
oo

[rs— Nesatnige o caem

4. On the Customize Services screen there are no properties that must be specified. We
recommend that you use default values for your initial configuration. Click "Next" to
continue.

5. Ambari will display the Review screen.

c Important

On the Review screen, make sure all HDP components are version 2.2.6 or
later.

Click "Deploy" to continue.

6. Ambari will display the Install, Start and Test screen. The status bar and messages will
indicate progress.

Add Service Wizard

Install, Start and Test

==
Saa Massage
1 o
nzia - P R ——
-

.

7. When finished, Ambari will present a summary of results. Click "Complete" to finish
installing Spark.

Hortonworks Data Platform July 21, 2015

c Caution

Ambari will create and edit several configuration files. Do not edit these files
directly if you configure and manage your cluster using Ambari.

Hortonworks Data Platform

July 21, 2015

4. Validating Spark

To validate the Spark installation, run the following Spark jobs:
* Spark Pi example

* WordCount example

4.1. Run the Spark Pi example

The Pi program tests compute-intensive tasks by calculating pi using an approximation
method. The program “throws darts” at a circle — it generates points in the unit square
((0,0) to (1,1)) and sees how many fall within the unit circle. The result approximates pi.

4R

To run Spark Pi:

1. Log on as a user with HDFS access—for example, your spar k user (if you defined one) or

hdf s. Navigate to a node with a Spark client and access the spar k- cl i ent directory:

su hdfs

cd /usr/ hdp/current/spark-client
2. Submit the Spark Pi job:

./ bin/spark-submt --class org.apache. spark. exanpl es. Spar kPi -
master yarn-cluster --numexecutors 3 --driver-menory 512m - -
execut or-nmenory 512m --executor-cores 1 |ib/spark-exanples*.jar
10

The job should complete without errors. It should produce output similar to the
following:

15/06/ 10 17:29:35 INFO dient:
client token: NA
di agnostics: NA
Appl i cati onMast er host: N A
Appl i cati onMaster RPC port: O
queue: default
start tinme: 1428686924325
final status: SUCCEEDED
tracking URL: http://bluel: 8088/ proxy/
appl i cation_1428670545834_0009/
user: hdfs

To view job status in a browser, copy the URL tracking from the job output and go to
the associated URL.

3. Job output should list the estimated value of pi. In the following example, output was
directed to stdout:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_spark-quickstart/content/run_spark_pi.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_spark-quickstart/content/run_wordcount.html

Hortonworks Data Platform

July 21, 2015

Log Type: stdout

Log Upl oad Time: 10-Jun-2015 17:13:33
Log Length: 23

Pi is roughly 3.142532

4.2. Run the WordCount Example

WordCount is a simple program that counts how often a word occurs in a text file.

1. Select an input file for the Spark WordCount example. You can use any text file as input.

2. Upload the input file to HDFS. The following example uses | og4j . properti es as the

input file:
su hdfs

cd /usr/hdp/current/spark-client/

hadoop fs -copyFroniocal /etc/hadoop/conf/log4j.properties /tnp/

dat a

3. Run the Spark shell:

./ bin/spark-shell --master yarn-client --driver-nmenory 512m - -

executor-menory 512m

You should see output similar to the following:

Spark assenbly has been built with Hi ve, including Datanucleus jars on

cl asspat h

15/ 06/ 30 17:42:41 | NFO SecurityManager: Changing view acls to: root

15/ 06/ 30 17:42:41 | NFO SecurityManager: Changing nodify acls to:

r oot

15/ 06/ 30 17:42:41 | NFO SecurityManager: SecurityManager: authentication
di sabl ed; ui acls disabled; users with view permi ssions: Set(root); users

with nodify permni ssions: Set(root)
15/ 06/ 30 17:42:41 INFO HttpServer: Starting HTTP Server

15/ 06/ 30 17:42:41 INFO Uils: Successfully started service 'HITP cl ass

server' on port 55958.
Vel cone to

/ /1

/
NN N T
/

/ N TN N version 1.3.1

I/

Usi ng Scal a version 2.10.4 (Java Hot Spot (TM 64-Bit Server VM Java 1.7.

0_67)
Type in expressions to have them eval uat ed.
Type :help for nore information.

15/ 06/ 30 17:42: 47 | NFO SecurityManager: Changing view acls to: root

15/ 06/ 30 17:42: 47 | NFO SecurityManager: Changing nmodify acls to:

r oot

15/ 06/ 30 17:42:47 | NFO SecurityManager: SecurityManager: authentication
di sabl ed; ui acls disabled; users with view permi ssions: Set(root); users

with nodify pernissions: Set(root)
15/ 06/ 30 17:42:48 I NFO SIf4j Logger: SIf4jLogger started
15/ 06/ 30 17:42:48 | NFO Renoting: Starting renoting

10

Hortonworks Data Platform July 21, 2015

15/ 06/ 30 17:42:48 | NFO Renpting: Renoting started; |istening on addresses :
[akka.tcp://sparkDriver @r eend: 33452]

15/ 06/ 30 17:42:48 INFO Utils: Successfully started service 'sparkDriver' on
port 33452.

15/ 06/ 30 17:42: 48 | NFO Spar kEnv: Regi stering MapQut put Tr acker

15/ 06/ 30 17:42: 48 | NFO Spar kEnv: Regi stering Bl ockManager Mast er

15/ 06/ 30 17:42:48 | NFO Di skBl ockManager: Created |local directory at /

t np/ spar k- aOf dblce- d395- 497d- bf 6f - 1cf 00ae253b7/ spar k- 52df e754- 7f 19- 4b5b-
bd73- 0745al1f 6d158

15/ 06/ 30 17:42:48 | NFO MenoryStore: MenoryStore started with capacity 265.4
VB

15/ 06/ 30 17: 42: 48 WARN Nat i veCodelLoader: Unable to | oad native- hadoop
library for your platform.. using builtin-java cl asses where applicable
15/ 06/ 30 17:42:49 INFO HttpFil eServer: HTTP File server directory
is /tnp/spark-817944df - 07d2- 4205- 972c- e1b877ca4869/ spar k- 280ea9dd-

e40d- 4ec0- 8ecf - 8c4b159daf af

15/ 06/ 30 17:42:49 INFO HttpServer: Starting HTTP Server

15/ 06/ 30 17:42:49 INFO Utils: Successfully started service 'HITP file
server' on port 56174.

15/ 06/ 30 17:42:49 INFO Uils: Successfully started service 'SparkU' on port
4040.

15/ 06/ 30 17:42:49 | NFO SparkUl : Started SparkU at http://greend: 4040

15/ 06/ 30 17:42: 49 | NFO Executor: Starting executor ID <driver> on host
| ocal host

15/ 06/ 30 17:42:49 | NFO Executor: Using REPL class URI: http://172.23. 160.

52: 55958

15/ 06/ 30 17:42:49 | NFO Akkaltils: Connecting to Heartbeat Recei ver: akka.

tcp://sparkDriver @reend: 33452/ user / Hear t beat Recei ver

15/ 06/ 30 17:42:49 | NFO NettyBl ockTransfer Servi ce: Server created on 47704
15/ 06/ 30 17:42:49 | NFO Bl ockManager Master: Trying to register Bl ockianager
15/ 06/ 30 17: 42: 49 | NFO Bl ockManager Mast er Act or: Regi stering bl ock manager
| ocal host: 47704 with 265.4 MB RAM Bl ockManager | d(<driver>, | ocal host,
47704)

15/ 06/ 30 17:42:49 | NFO Bl ockianager Mast er: Regi st ered Bl ockManager

15/ 06/ 30 17:42:49 | NFO Sparkl Loop: Created spark context..

Spar k context avail able as sc.

scal a>

4. Submit the job. At the scala prompt, type the following commands, replacing node
names, file name and file location with your own values:

val file = sc.textFile("/tnp/data")

val counts = file.flatMap(line => line.split(" ")).mp(wrd =>
(word, 1)).reduceByKey(_ +)

counts. saveAsText Fil e("/tnp/wordcount™)

5. To view the output from within the scala shell:

counts.toArray().foreach(println)

To view the output using HDFS:

a. Exit the scala shell (cont r ol - d).

11

Hortonworks Data Platform July 21, 2015

b. View WordCount job results:
hadoop fs -1s /tnp/wordcount

You should see output similar to the following:

[t mp/ wor dcount / _SUCCESS
/'t mp/ wor dcount / par t - 00000
[t np/ wor dcount / part - 00001

¢. Use the HDFS cat command to list WordCount output. For example:

hadoop fs -cat /tnp/wordcount/part*

12

Hortonworks Data Platform July 21, 2015

5. Installing Spark with Kerberos

Spark jobs are submitted to a Hadoop cluster as YARN jobs. The developer creates a Spark
application in a local environment, and tests it in a single-node Spark Standalone cluster on
their developer workstation.

When a job is ready to run in a production environment, there are a few additional steps if
the cluster is Kerberized:

* The Spark History Server daemon needs a Kerberos account and keytab to runin a
Kerberized cluster.

* When you enable Kerberos for a Hadoop cluster with Ambari, Ambari configures
Kerberos for the Spark History Server and automatically creates a Kerberos account
and keytab for it. For more information, see Configuring Ambari and Hadoop for
Kerberos.

¢ If you are not using Ambari, or if you plan to enable Kerberos manually for the Spark
History Server, see Creating Service Principals and Keytab Files for HDP in the Manual
Install Guide.

* To submit Spark jobs in a Kerberized cluster, the account (or person) submitting jobs
needs a Kerberos account & keytab.

¢ When access is authenticated without human interaction — as happens for processes
that submit job requests — the process would use a headless keytab. Security risk is
mitigated by ensuring that only the service who should be using the headless keytab
has the permissions to read it.

¢ An end user should use their own keytab when submitting a Spark job.
Setting Up Principals and Keytabs for End User Access to Spark

In the following example, user SUSERNAME runs the Spark Pi job in a Kerberos-enabled
environment:

su $USERNAMVE
ki nit USERNAME@/OUR- LOCAL- REALM COM
cd /usr/hdp/current/spark-client/
./ bin/spark-submt --class org.apache. spark. exanpl es. Spar kPi \
--master yarn-cluster \
--num executors 3\
--driver-menory 512m\
--executor-nmenory 512m\
--executor-cores 1\
l'i b/ spar k- exanpl es*.jar 10

Setting Up Service Principals and Keytabs for Processes Submitting Spark Jobs

The following example shows the creation and use of a headless keytab for a spar k service
user account that will submit Spark jobs on node bl uel@xanpl e. com

1. Create a Kerberos service principal for user spar k:

kadm n.l ocal -q "addprinc -randkey spark/ bl uel@XAMPLE. COM'

13

https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Security_Guide/content/ch_configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Security_Guide/content/ch_configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_installing_manually_book/content/creating_service_principals_and_keytab_files_for_hdp.html

Hortonworks Data Platform July 21, 2015

2. Create the keytab:

kadm n.local -q "xst -k /etc/security/keytabs/spark. keytab
spar k/ bl uel@XAVPLE. COM'

3. Create a spar k user and add it to the hadoop group. (Do this for every node of your
cluster.)

useradd spark -g hadoop

4. Make spar k the owner of the newly-created keytab:
chown spark: hadoop /etc/security/keytabs/spark. keyt ab

5. Limit access: make sure user spar K is the only user with access to the keytab:
chnmod 400 /etc/security/ keytabs/spark. keytab

In the following steps, user spar k runs the Spark Pi example in a Kerberos-enabled
environment:

su spark
kinit -kt /etc/security/keytabs/spark. keytab spark/ bl uel@XAMPLE. COM
cd /usr/hdp/current/spark-client/
./ bin/spark-subnmit --class org.apache. spark. exanpl es. Spar kPi \
--master yarn-cluster \
--num executors 1 \
--driver-nenmory 512m\
--executor-nenory 512m\
--executor-cores 1 \
I i b/ spar k- exanpl es*.jar 10

5.1. Accessing the Hive Metastore in Secure Mode

Requirements for accessing the Hive Metastore in secure mode (with Kerberos):
* The Spark thrift server must be co-located with the Hive thrift server.
* The spar k user must be able to access the Hive keytab.

* In yarn-client mode on a secure cluster you can use HiveContext to access the Hive
Metastore. (HiveContext is not supported for yarn-cluster mode on a secure cluster.)

14

Hortonworks Data Platform July 21, 2015

6. Best Practices

This section contains recommendations and best practices for using Spark with HDP 2.3.

6.1. Using SQLContext and HiveContext

There are two ways to create context in Spark SQL:
¢ The SQLCont ext class is the entry point into all Spark SQL functionality.

¢ The Hi veCont ext class inherits from SQLCont ext and implements a superset of the
functionality provided by SQ.Cont ext . Additional features include the ability to write
queries using HiveQL, and the ability to read data from Hive tables.

Recommendation: use HiveContext (instead of SQLContext) whenever possible.

3 Note
In yarn-client mode on a secure cluster you can use HiveContext to access the
Hive Metastore. HiveContext is not supported for yarn-cluster mode on a secure
cluster.

Examples

The following functions work with both Hi veCont ext & SQLCont ext :

Avg()
Sum()

The following functions work only with Hi veCont ext :
vari ance(col)

var _pop(col)

st ddev_pop(col)

st ddev_sanp(col)

covar _sanp(col 1, col 2)

For more information, see the Spark Programming Guide.

6.2. Guidelines for Determining Spark Memory
Allocation

This section describes how to determine memory allocation for a JVM running the Spark
executor.

15

https://spark.apache.org/docs/1.3.1/sql-programming-guide.html#starting-point-sqlcontext

Hortonworks Data Platform July 21, 2015

To avoid memory issues, Spark uses 90% of the JVM heap by default. This percentage is
controlled by spar k. st or age. saf et yFracti on.

Of this 90% of JVM allocation, Spark reserves memory for three purposes:

* Storing in-memory shuffle, 20% by default (controlled by
spar k. shuf f| e. menor yFracti on)

* Unroll - used to serialize/deserialize Spark objects to disk when they don't fit in memory,
20% is default (controlled by spar k. st orage. unrol | Fracti on)

« Storing RDDs: 60% by default (controlled by spar k. st or age. menor yFracti on)

Example
If the JVM heap is 4GB, the total memory available for RDD storage is calculated as:
4GBx0.9X0.6=2.16 GB

Therefore, with the default configuration approximately one half of the Executor JVM
heap is used for storing RDDs.

For additional information about Spark memory use, see the Apache Spark Hardware
Provisioning recommendations.

6.3. Configuring YARN Memory Allocation for
Spark

This section describes how to manually configure YARN memory allocation settings based
on node hardware specifications.

YARN takes into account all of the available compute resources on each machine in the
cluster, and negotiates resource requests from applications running in the cluster. YARN
then provides processing capacity to each application by allocating containers. A container
is the basic unit of processing capacity in YARN; it is an encapsulation of resource elements
such as memory (RAM) and CPU.

In a Hadoop cluster, it is important to balance the usage of RAM, CPU cores, and disks so
that processing is not constrained by any one of these cluster resources.

When determining the appropriate YARN memory configurations for SPARK, note the
following values on each node:

* RAM (Amount of memory)
* CORES (Number of CPU cores)
Configuring Spark for yar n- cl ust er Deployment Mode

Inyar n- cl ust er mode, the Spark driver runs inside an application master process that is
managed by YARN on the cluster. The client can stop after initiating the application.

16

https://spark.apache.org/docs/1.3.1/hardware-provisioning.html
https://spark.apache.org/docs/1.3.1/hardware-provisioning.html

Hortonworks Data Platform July 21, 2015

The following command starts a YARN client in yar n- cl ust er mode. The client will start
the default Application Master. SparkPi will run as a child thread of the Application Master.
The client will periodically poll the Application Master for status updates, which will be
displayed in the console. The client will exist when the application stops running.

./ bi n/ spark-submt --class org.apache. spark. exanpl es. Spar kPi \
--master yarn-cluster \
--num executors 3 \
--driver-menory 4g \
--executor-nenmory 2g \
--executor-cores 1 \
|'i b/ spark-exanpl es*.jar 10

Configuring Spark for yar n- cl i ent Deployment Mode

Inyar n-cl i ent mode, the driver runs in the client process. The application master is only
used to request resources for YARN.

To launch a Spark application in yar n- cl i ent mode, replace yar n- cl ust er with
yarn-client. For example:

./ bi n/ spark-shell --numexecutors 32 \
--executor-nenory 24g \
--master yarn-client

Considerations
When configuring Spark on YARN, consider the following information:

» Executor processes will be not released if the job has not finished, even if they are no
longer in use. Therefore, please do not overallocate executors above your estimated
requirements.

* Driver memory does not need to be large if the job does not aggregate much data (as
with a col | ect () action).

* There are tradeoffs between num execut or s and execut or - menory. Large executor
memory does not imply better performance, due to JVM garbage collection. Sometimes
it is better to configur a larger number of small JVMs than a small number of large JVMs.

17

Hortonworks Data Platform July 21, 2015

7. Accessing ORC Files from Spark

Spark on HDP provides full support for Optimized Row Columnar ("ORC") files. ORCis a
column-based file format that offers efficient storage of Hive data.

The following example shows how to access an ORC file programmatically as a table.

The example uses a text file called peopl e. t xt, which is included in the Apache Spark
distribution. The file contains three lines:

M chael , 29
Andy, 30
Justin, 19

1. Download or create the peopl e. t xt file.
2. Copy peopl e. t xt into HDFS:
cd /usr/hdp/current/spark-client/conf/

hadoop dfs -put exanpl es/src/ mai n/resources/ peopl e. t xt
peopl e. t xt

3. Create and populate a Hive table:

**# I nport ORC support and Spark SQL |ibraries
i mport org.apache. spark. sql . hive.orc. _
i nport org. apache. spark. sql . _

4# Prepare the Spark table

**# Create a hiveCont ext
**4# sc is an existing SparkCont ext
val hiveContext = new org. apache. spark. sql . hi ve. Hi veCont ext (sc)

**4# Create an RDD of "people" objects
val people = sc.textFile("people.txt")

**4# Specify the schema as a string
val schemaString = "nanme age"

**4# Create the schema based on the schemaString
val schema =
Struct Type(
schemaString.split(" ").mp(fiel dName =>
{if(fieldName == "nane")
StructFiel d(fiel dName, StringType, true) el se
StructFi el d(fi el dName, | ntegerType, true)}))

**4# Convert records in people to rows
val rowRDD = people. map(_.split(",")).mp(p => Row(p(0), new Integer(p(1).
trim))

**4 Apply the schema to the RDD
val peopl eSchemaRDD = hi veCont ext . appl ySchema(r owRDD, schens)

**4# Regi ster the people SchenmaRdd as a table

18

https://github.com/apache/spark/blob/master/examples/src/main/resources/people.txt
https://github.com/apache/spark/blob/master/examples/src/main/resources/people.txt

Hortonworks Data Platform July 21, 2015

peopl eSchemaRDD. r egi st er TenpTabl e(" peopl e")
val results = hiveContext.sqgl ("SELECT * FROM peopl e")

**4 List query results
results. map(t => "Nane: " + t.toString).collect().foreach(println)

4. Create and populate an ORC table from peopl e:
**# ORC-specific section **

**4# Save people as an ORC-format file

peopl eSchemaRDD. saveAsOr cFi | e(" peopl e. orc")

**# | nport "people.orc” into a Spark SQ. table called "norePeopl e"
val norePeopl e = hi veCont ext.orcFil e("peopl e.orc")

**# Regi ster norePeople as a table
**4# This allows you to run standard SQ. queries on norePeopl e
nor ePeopl e. regi st er TenpTabl e(" nor ePeopl e")

**# Display all rows
hi veCont ext . sql ("SELECT * from norePeopl e").col | ect.foreach(println)

19

Hortonworks Data Platform July 21, 2015

8. Using Spark with HDFS

Specifying Compression

To specify compression in Spark-shell when writing to HDFS, use code similar to:
rdd. saveAsHadoopFi | e("/t np/ spar k_conpressed"”,

"or g. apache. hadoop. mapr ed. Text Qut put For mat ",

conpr essi onCodecC ass="or g. apache. hadoop. i 0. conpress. Gzi pCodec")

Setting HADOOP_CONF_DI R

If PySpark is accessing an HDFS file, HADOOP_CONF_DI R needs to be set in an environment
variable. For example:

export HADOOP_CONF_DI R=/ et c/ hadoop/ conf

[hrt_ga@ p-172- 31-42-188 spark] $ pyspark
[hrt_ga@p-172-31-42-188 spark]$ >>>lines = sc.textFile("hdfs://
i p-172-31-42-188. ec2. i nternal : 8020/t np/ PySpar kTest/fil e-01")

If HADOOP_CONF_DIR is not set properly, you might see the following error:

Error from secure cluster

2015-09- 04 00: 27: 06, 046| t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead|

Py4JJavaError: An error occurred while calling z:org. apache. spark. api . pyt hon.

Pyt honRDD. col | ect AndSer ve.

2015- 09- 04 00: 27: 06, 047| t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| : org.

apache. hadoop. security. AccessControl Exception: SIMPLE aut hentication is not
enabl ed. Avail abl e: [TOKEN, KERBEROS]

2015- 09- 04 00: 27: 06, 047|t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| at
sun. refl ect. Nati veConst ruct or Accessor | nmpl . new nst anceO(Nati ve Met hod)

2015-09- 04 00: 27: 06, 047| t 1. machi ne| | NFQ 1580| 140672245782272|

Mai nThread| at sun. refl ect. NativeConstruct or Accessor | npl .

new nst ance(Nati veConst ruct or Accessor | npl . j ava: 57)

2015- 09- 04 00: 27: 06, 048| t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| at

{code}

20

Hortonworks Data Platform July 21, 2015

9. Troubleshooting Spark

When you run a Spark job, you will see a standard set of console messages.
In addition, the following information is available:

* A list of running applications, where you can retrieve the application ID and check the
application log:

yarn application —list
yarn |l ogs -applicationld <app_id>
* For information about a specific job, check the Spark web Ul:

htt p://<host >: 8088/ proxy/ <j ob_i d>/ envi r onrment /

The following paragraphs describe specific issues and possible solutions.

Issue: Spark YARN jobs don’t seem to start. YARN Resource Manager logs show an
application with "bad substitution” errors in its logs.

Solution: Make sure that your $SPARK_HOWE/ conf i g/ spar k- def aul t s. conf file
includes your HDP version. For example:

spar k. driver. extraJavaOpti ons
- Dhdp. ver si on=2. 3. 0. 0- 2557

spar k. yarn. am ext raJavaOpti ons
- Dhdp. ver si on=2. 3. 0. 0- 2557

To check the HDP version for an Ambari-managed cluster, navigatetohtt p: //
$AMBARI _SERVER: 8080/ #/ mai n/ adm n/ st ack/ ver si ons, where
$AMBARI _SERVER s your Ambari Web URL.

To check the version via bash, run the following command:

> bash-4. 1# hdp-sel ect status hadoop-client | sed 's/hadoop-
client - \(.*\)/\1/'

2.3.0.0-2557

Issue: Job stays in "accepted" state; it doesn't run. This can happen when a job requests
more memory or cores than available.

Solution: Assess workload to see if any resources can be released. You might need to stop
unresponsive jobs to make room for the job.

Issue: Insufficient HDFS access. This can lead to errors such as the following:

21

Hortonworks Data Platform July 21, 2015

“Loading data to table default.testtable

Failed with exception

Unabl e to nmove sourcehdfs://bl uel: 8020/t np/ hi ve- spar k/ hi ve_2015- 06- 04_
12-45-42 404_3643812080461575333- 1/ - ext - 10000/ kvl.txt to desti nati on
hdf s: // bl uel: 8020/ apps/ hi ve/ war ehouse/t estt abl e/ kvl. t xt”

Solution: Make sure the user or group running the job has sufficient HDFS privileges to the
location.

Issue: Wrong host in Beeline, shows error as invalid URL:

Error: Invalid URL: jdbc: hive2://|ocal host: 10001 (state=08S01, code=0)

Solution: Specify the correct Beeline host assignment.

Issue: Error: closed SQLContext.

Solution: Restart the Thrift server.

22

Hortonworks Data Platform July 21, 2015

10. Appendix A: Upgrading from the
Spark Tech Preview

When moving from the Spark Tech Preview to the full HDP version of Spark, make sure
that the hi ve. met ast ore. uri s property in your hi ve-si t e. xm fileis set to the Hive
Metastore URI in your cluster. The hi ve-si t e. xml file typically resides in/ usr/ hdp/
current/spark-client/conf/.

Example:

<confi guration>
<property>
<nane>hi ve. met ast or e. uri s</ name>
<val ue>thrift://bluel: 9083</val ue>
<description>URl for client to contact nmetastore server</description>
</ property>
</ confi guration>

When you install Spark 1.3.1 using Ambari or the manual installation process, Spark creates
and populates the hi ve-si t e. xnl file — you no longer need to create hi ve-site. xnl .

23

	Hortonworks Data Platform
	Table of Contents
	1. Introduction
	2. Prerequisites
	3. Installing Spark
	4. Validating Spark
	4.1. Run the Spark Pi example
	4.2. Run the WordCount Example

	5. Installing Spark with Kerberos
	5.1. Accessing the Hive Metastore in Secure Mode

	6. Best Practices
	6.1. Using SQLContext and HiveContext
	6.2. Guidelines for Determining Spark Memory Allocation
	6.3. Configuring YARN Memory Allocation for Spark

	7. Accessing ORC Files from Spark
	8. Using Spark with HDFS
	9. Troubleshooting Spark
	10. Appendix A: Upgrading from the Spark Tech Preview

