
CDP Private Cloud

Migrating Hive Workloads to CDP Private Cloud
Date published: 2019-08-22
Date modified: 2023-02-03

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

CDP Private Cloud | Contents | iii

Contents

Migrating Hive workloads from CDH... 6
Changes to CDH Hive Tables..6
Configuration changes.. 7

Hive Configuration Property Changes... 7
Customizing critical Hive configurations...15
Setting Hive Configuration Overrides..16
Hive Configuration Requirements and Recommendations.. 17
Configuring HMS for high availability..19
Setting up Hive metastore for Atlas.. 20
Changing the Hive warehouse location... 21

Security tasks.. 21
Making the Hive plugin for Ranger visible... 21
Configuring authorization to tables..23
Setting up access control lists.. 23
Configure encryption zone security... 24
Configure edge nodes as gateways.. 24
Configure HiveServer HTTP mode..24

Key syntax changes.. 25
Handling table reference syntax...25
LOCATION and MANAGEDLOCATION clauses...25

Key semantic changes and workarounds... 26
Changing incompatible column types.. 26
Understanding CREATE TABLE behavior... 27
Configuring legacy CREATE TABLE behavior... 28
Dropping partitions... 29
Handling the Keyword APPLICATION.. 29
Handling output of greatest and least functions.. 30
Renaming tables..30
TRUNCATE TABLE on an external table..30

Other syntax and semantic changes... 31
Syntax and semantic changes CDH 6.2.1 to CDP 7.0.3.2...31
Semantic changes and workarounds CDP 7.1.1.. 41
Semantic changes and workarounds CDP 7.1.4.. 42
Semantic changes and workarounds CDP 7.1.5.. 43
Semantic changes and workarounds CDP 7.1.6.. 44
Semantic changes and workarounds CDP 7.1.7.. 46
Semantic changes and workarounds CDP 7.1.7 SP1...46
Semantic changes and workarounds CDP 7.1.7 SP2...47
Semantic changes and workarounds CDP 7.1.7 SP2 CHFx.. 48
Semantic changes and workarounds CDP 7.1.8 CHFx..49

Migrating Spark Apps.. 50
Preventing SparkSQL incompatibility..50
Spark integration with Hive... 51
Removing Hive on Spark Configurations..51

Disabling Partition Type Checking.. 51
Converting Hive CLI scripts to Beeline.. 52
Hive unsupported interfaces and features.. 53

CDP Private Cloud | Contents | iv

Migrating Hive Workloads from HDP 2.6.5 after an in-place upgrade............ 55
Changes to HDP Hive tables... 55
Checking and correcting Hive table locations... 56
Configuration changes.. 57

Hive Configuration Property Changes... 57
Customizing critical Hive configurations...66
Setting Hive Configuration Overrides..66
Hive Configuration Requirements and Recommendations.. 67
Configuring HMS for high availability..69
Setting up Hive metastore for Atlas.. 70
Changing the Hive warehouse location... 71
Removing the LLAP Queue...72

Security tasks.. 72
Making the Hive plugin for Ranger visible... 72
Configuring authorization to tables..73
Setting up access control lists.. 74
Configure encryption zone security... 74
Configure edge nodes as gateways.. 75
Configure HiveServer HTTP mode..75

Handling syntax changes..75
Handling table reference syntax...76
LOCATION and MANAGEDLOCATION clauses...76

Key semantic changes and workarounds... 77
Casting timestamps... 77
Changing incompatible column types.. 77
Understanding CREATE TABLE behavior... 78
Configuring legacy CREATE TABLE behavior... 79
Dropping partitions... 80
Handling output of greatest and least functions.. 80
Renaming tables..81
TRUNCATE TABLE on an external table..81

Migrating Spark Apps.. 81
Spark integration with Hive... 81

Identifying and fixing invalid Hive schema versions.. 82
Fixing statistics... 82
Converting Hive CLI scripts to Beeline.. 83
Hive unsupported interfaces and features.. 84

Replicating Hive data from HDP 3 to CDP...85
Replicating Hive data... 86
Configuring the CDP cluster..86

Mandatory CDP policy-level properties...86
Optional CDP policy-level properties.. 87
Supported scheduled query operations...88

Configuring the HDP cluster..89
Mandatory HDP cluster configuration properties.. 90
Mandatory HDP policy-level properties.. 91
Optional HDP policy-level properties..91

Configuring wire-encrypted clusters.. 92
Example commands for replicating HDP 3 workloads... 93
Troubleshooting Hive replication using REPL.. 95
Repl Command Known Issues... 95
Patches Required on HDP..96

CDP Private Cloud | Contents | v

Patches required on CDP... 97
Verifying the Hive data replication..97

Setting up the HDP cluster...99
Verifying replication...101
Handing a failed verification..102
Validating external table replication.. 103
Enabling background threads after migration.. 104

Migration paths from HDP 3 to CDP for LLAP users.....................................105
Migration paths for Hive users.. 105

Migration to Cloudera Private Cloud Base or CDP Public Cloud...106
Migration to Cloudera Data Warehouse.. 106
Apache Tez processing of Hive jobs... 107

Migration paths for Spark users...107
Migration to Cloudera Private Cloud Base..108
HWC changes from HDP to CDP... 109

Migrating Hive workloads from Cloudera Base on premises to Cloudera
Data Warehouse on premises.. 110

Planning a Cloudera Data Warehouse Virtual Warehouse instance.. 111
Apache Tez processing of Hive jobs... 112
Migrate Hive workloads from HDP (LLAP) to Cloudera Data Warehouse (LLAP)...................................... 113
Migrate from Cloudera Base on premises (Hive on Tez) to Cloudera Data Warehouse (LLAP)....................115

Migrating Hive workloads to ACID... 116
Tables in Hive 1 and 2 vs. Hive 3...118
Compatible storage formats..118
Table design considerations..118
Hive ingest patterns introduction... 119
Classic ingest patterns.. 120
ACID ingest patterns.. 123
Handling government regulations in ACID tables...130
Key concepts about ACID ingest patterns...130

CDP Private Cloud Migrating Hive workloads from CDH

Migrating Hive workloads from CDH

You upgraded from CDH 5.13 - 5.16, or CDH 6, to Cloudera Base on premises. The upgrade moved the Hive data
and schema to Cloudera Base on premises. As the Hive Administrator, you need to make Hive tables available to your
users. You need to configure your Hive-related services for Cloudera, and secure access to Hive data.

Assumptions

• You are familiar with Apache Hive 3.1 key features and supported interfaces.
• You acquired basic information about the Cloudera platform before you upgraded from CDH.

The configuration changes you need to make are described in the subtopics "Configuration changes". The security
tasks you need to perform to secure access to Hive data are described in the subtopics "Security tasks".

Related Information
Apache Hive 3 Key Features

Apache Hive 3 Architectural Overview

Changes to CDH Hive Tables
As a Data Scientist, Architect, Analyst, or other Hive user you need to locate and use your Apache Hive 3 tables after
an upgrade. You also need to understand the changes that occur during the upgrade process. The location of existing
tables after a CDH to Cloudera upgrade does not change. Upgrading CDH to Cloudera Base on premises converts
Hive managed tables to external tables in Hive 3.

About this task

When the upgrade process converts a managed table to external, it sets the table property external.table.purge to true.
The table is equivalent to a managed table having purge set to true in your old CDH cluster.

Managed tables on the HDFS in /user/hive/warehouse before the upgrade remain there after the conversion to
external. Tables that were external before the upgrade are not relocated. You need to set HDFS policies to access
external tables in Ranger, or set up HDFS ACLs.

The upgrade process sets the hive.metastore.warehouse.dir property to /warehouse/tablespace/managed/hive,
designating it the Hive warehouse location for managed tables. New managed tables that you create in Cloudera are
stored in the Hive warehouse. New external tables are stored in the Hive external warehouse /warehouse/tablespace/
external/hive.

To change the location of the Hive warehouses, you navigate to one of the following menu items in the first step
below.

• Hive Action Menu Create Hive Warehouse Directory
• Hive Action Menu Create Hive Warehouse External Directory

6

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive_whats_new_in_this_release_hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive-apache-hive-3-architectural-overview.html

CDP Private Cloud Migrating Hive workloads from CDH

Procedure

1. Set up directories for the Hive warehouse directory and Hive warehouse external directory from Cloudera
Manager Actions.

2. In Cloudera Manager, click Clusters Hive (the Hive Metastore service) Configuration , and change the
hive.metastore.warehouse.dir property value to the path you specified for the new Hive warehouse directory.

3. Change the hive.metastore.warehouse.external.dir property value to the path you specified for the Hive warehouse
external directory.

4. Configure Ranger policies or set up ACL permissions to access the directories.

Related Information
HDFS ACLS

Configuration changes

Hive Configuration Property Changes
You need to know the property value changes made by the upgrade process as the change might impact your work.
You might need to consider reconfiguring property value defaults that the upgrade changes.

Hive Configuration Property Values

The upgrade process changes the default values of some Hive configuration properties and adds new properties. The
following list describes those changes that occur after upgrading from CDH or HDP to Cloudera.

datanucleus.connectionPool.maxPoolSize

Before upgrade: 30

After upgrade: 10

datanucleus.connectionPoolingType

Before upgrade: BONECP

After upgrade: HikariCP

hive.auto.convert.join.noconditionaltask.size

Before upgrade: 20971520

After upgrade: 52428800

7

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hdfs-acls/topics/hdfs-acls-examples.html

CDP Private Cloud Migrating Hive workloads from CDH

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.auto.convert.sortmerge.join

Before upgrade: FALSE in the old CDH; TRUE in the old HDP.

After upgrade: TRUE

hive.auto.convert.sortmerge.join.to.mapjoin

Before upgrade: FALSE

After upgrade: TRUE

hive.cbo.enable

Before upgrade: FALSE

After upgrade: TRUE

hive.cbo.show.warnings

Before upgrade: FALSE

After upgrade: TRUE

hive.compactor.worker.threads

Before upgrade: 0

After upgrade: 5

hive.compute.query.using.stats

Before upgrade: FALSE

After upgrade: TRUE

hive.conf.hidden.list

Before upgrade:

javax.jdo.option.ConnectionPassword,hive.server2.keystore.passwo
rd,hive.metastore.dbaccess.ssl.truststore.password,fs.s3.awsAcce
ssKeyId,fs.s3.awsSecretAccessKey,fs.s3n.awsAccessKeyId,fs.s3n.aw
sSecretAccessKey,fs.s3a.access.key,fs.s3a.secret.key,fs.s3a.prox
y.password,dfs.adls.oauth2.credential,fs.adl.oauth2.credential,f
s.azure.account.oauth2.client.secret

After upgrade:

javax.jdo.option.ConnectionPassword,hive.server2.keystore.passwo
rd,hive.druid.metadata.password,hive.driver.parallel.compilation
.global.limit

hive.conf.restricted.list

Before upgrade:

hive.security.authenticator.manager,hive.security.authorization.
manager,hive.users.in.admin.role,hive.server2.xsrf.filter.enable
d,hive.spark.client.connect.timeout,hive.spark.client.server.con
nect.timeout,hive.spark.client.channel.log.level,hive.spark.clie
nt.rpc.max.size,hive.spark.client.rpc.threads,hive.spark.client.
secret.bits,hive.spark.client.rpc.server.address,hive.spark.clie
nt.rpc.server.port,hive.spark.client.rpc.sasl.mechanisms,hadoop.
bin.path,yarn.bin.path,spark.home,bonecp.,hikaricp.,hive.driver.
parallel.compilation.global.limit,_hive.local.session.path,_hive
.hdfs.session.path,_hive.tmp_table_space,_hive.local.session.pat
h,_hive.hdfs.session.path,_hive.tmp_table_space

8

CDP Private Cloud Migrating Hive workloads from CDH

After upgrade:

hive.security.authenticator.manager,hive.security.authorization.
manager,hive.security.metastore.authorization.manager,hive.secur
ity.metastore.authenticator.manager,hive.users.in.admin.role,hiv
e.server2.xsrf.filter.enabled,hive.security.authorization.enable
d,hive.distcp.privileged.doAs,hive.server2.authentication.ldap.b
aseDN,hive.server2.authentication.ldap.url,hive.server2.authenti
cation.ldap.Domain,hive.server2.authentication.ldap.groupDNPatte
rn,hive.server2.authentication.ldap.groupFilter,hive.server2.aut
hentication.ldap.userDNPattern,hive.server2.authentication.ldap.
userFilter,hive.server2.authentication.ldap.groupMembershipKey,h
ive.server2.authentication.ldap.userMembershipKey,hive.server2.a
uthentication.ldap.groupClassKey,hive.server2.authentication.lda
p.customLDAPQuery,hive.privilege.synchronizer.interval,hive.spar
k.client.connect.timeout,hive.spark.client.server.connect.timeou
t,hive.spark.client.channel.log.level,hive.spark.client.rpc.max.
size,hive.spark.client.rpc.threads,hive.spark.client.secret.bits
,hive.spark.client.rpc.server.address,hive.spark.client.rpc.serv
er.port,hive.spark.client.rpc.sasl.mechanisms,bonecp.,hive.druid
.broker.address.default,hive.druid.coordinator.address.default,h
ikaricp.,hadoop.bin.path,yarn.bin.path,spark.home,hive.driver.pa
rallel.compilation.global.limit,_hive.local.session.path,_hive.h
dfs.session.path,_hive.tmp_table_space,_hive.local.session.path,
_hive.hdfs.session.path,_hive.tmp_table_space

hive.default.fileformat.managed

Before upgrade: None

After upgrade: ORC

hive.default.rcfile.serde

Before upgrade: org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe

After upgrade: org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe

Not supported in Impala. Impala cannot read Hive-created RC tables.

hive.driver.parallel.compilation

Before upgrade: FALSE

After upgrade: TRUE

hive.exec.dynamic.partition.mode

Before upgrade: strict

After upgrade: nonstrict

In Cloudera Base on premises, accidental use of dynamic partitioning feature is not prevented by
default.

hive.exec.max.dynamic.partitions

Before upgrade: 1000

After upgrade: 5000

In Cloudera Base on premises, fewer restrictions on dynamic paritioning occur than in the pre-
upgrade CDH or HDP cluster.

hive.exec.max.dynamic.partitions.pernode

Before upgrade: 100

After upgrade: 2000

9

CDP Private Cloud Migrating Hive workloads from CDH

In Cloudera Base on premises, fewer restrictions on dynamic paritioning occur than in the pre-
upgrade CDH or HDP cluster.

hive.exec.post.hooks

Before upgrade:

com.cloudera.navigator.audit.hive.HiveExecHookContext,org.apache
.hadoop.hive.ql.hooks.LineageLogger

After upgrade: org.apache.hadoop.hive.ql.hooks.HiveProtoLoggingHook

A prime number is recommended.

hive.exec.reducers.max

Before upgrade: 1099

After upgrade: 1009

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default

hive.execution.engine

Before upgrade: mr

After upgrade: tez

Tez is now the only supported execution engine, existing queries that change execution mode to
Spark or MapReduce within a session, for example, fail.

hive.fetch.task.conversion

Before upgrade: minimal

After upgrade: more

hive.fetch.task.conversion.threshold

Before upgrade: 256MB

After upgrade: 1GB

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.hashtable.key.count.adjustment

Before upgrade: 1

After upgrade: 0.99

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.limit.optimize.enable

Before upgrade: FALSE

After upgrade: TRUE

hive.limit.pushdown.memory.usage

Before upgrade: 0.1

After upgrade: 0.04

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.mapjoin.hybridgrace.hashtable

Before upgrade: TRUE

After upgrade: FALSE

hive.mapred.reduce.tasks.speculative.execution

Before upgrade: TRUE

10

CDP Private Cloud Migrating Hive workloads from CDH

After upgrade: FALSE

hive.metastore.aggregate.stats.cache.enabled

Before upgrade: TRUE

After upgrade: FALSE

hive.metastore.disallow.incompatible.col.type.changes

Before upgrade: FALSE

After upgrade: TRUE

Schema evolution is more restrictive in Cloudera Base on premises than in CDH to avoid
data corruption. The new default disallows column type changes if the old and new types are
incompatible.

hive.metastore.dml.events

Before upgrade: FALSE

After upgrade: TRUE

hive.metastore.event.message.factory

Before upgrade: org.apache.hadoop.hive.metastore.messaging.json.ExtendedJSONMessageFactory

After upgrade: org.apache.hadoop.hive.metastore.messaging.json.gzip.GzipJSONMessageEncoder

hive.metastore.uri.selection

Before upgrade: SEQUENTIAL

After upgrade: RANDOM

hive.metastore.warehouse.dir

Before upgrade from CDH: /user/hive/warehouse

Before upgrade from HDP: /apps/hive/warehouse

After upgrade from CDH: /warehouse/tablespace/managed/hive

After upgrade from HDP: /warehouse/tablespace/managed/hive

For information about the location of old tables and new tables, which you create after the upgrade,
see Changes to CDH Hive Tables or Changes to HDP Hive tables.

hive.optimize.metadataonly

Before upgrade: FALSE

After upgrade: TRUE

hive.optimize.point.lookup.min

Before upgrade: 31

After upgrade: 2

hive.prewarm.numcontainers

Before upgrade: 10

After upgrade: 3

hive.script.operator.env.blacklist

Before upgrade: hive.txn.valid.txns,hive.script.operator.env.blacklist

After upgrade: hive.txn.valid.txns,hive.txn.tables.valid.writeids,hive.txn.valid.writeids,hive.script.o
perator.env.blacklist

hive.security.authorization.sqlstd.confwhitelist

11

CDP Private Cloud Migrating Hive workloads from CDH

Before upgrade:

hive\.auto\..*hive\.cbo\..*hive\.convert\..*hive\.exec\.dynamic\
.partition.*hive\.exec\..*\.dynamic\.partitions\..*hive\.exec\.c
ompress\..*hive\.exec\.infer\..*hive\.exec\.mode.local\..*hive\.
exec\.orc\..*hive\.exec\.parallel.*hive\.explain\..*hive\.fetch.
task\..*hive\.groupby\..*hive\.hbase\..*hive\.index\..*hive\.ind
ex\..*hive\.intermediate\..*hive\.join\..*hive\.limit\..*hive\.l
og\..*hive\.mapjoin\..*hive\.merge\..*hive\.optimize\..*hive\.or
c\..*hive\.outerjoin\..*hive\.parquet\..*hive\.ppd\..*hive\.prew
arm\..*hive\.server2\.proxy\.userhive\.skewjoin\..*hive\.smbjoin
\..*hive\.stats\..*hive\.strict\..*hive\.tez\..*hive\.vectorized
\..*mapred\.map\..*mapred\.reduce\..*mapred\.output\.compression
\.codecmapred\.job\.queuenamemapred\.output\.compression\.typema
pred\.min\.split\.sizemapreduce\.job\.reduce\.slowstart\.complet
edmapsmapreduce\.job\.queuenamemapreduce\.job\.tagsmapreduce\.in
put\.fileinputformat\.split\.minsizemapreduce\.map\..*mapreduce\
.reduce\..*mapreduce\.output\.fileoutputformat\.compress\.codecm
apreduce\.output\.fileoutputformat\.compress\.typeoozie\..*tez\.
am\..*tez\.task\..*tez\.runtime\..*tez\.queue\.namehive\.transpo
se\.aggr\.joinhive\.exec\.reducers\.bytes\.per\.reducerhive\.cli
ent\.stats\.countershive\.exec\.default\.partition\.namehive\.ex
ec\.drop\.ignorenonexistenthive\.counters\.group\.namehive\.defa
ult\.fileformat\.managedhive\.enforce\.bucketmapjoinhive\.enforc
e\.sortmergebucketmapjoinhive\.cache\.expr\.evaluationhive\.quer
y\.result\.fileformathive\.hashtable\.loadfactorhive\.hashtable\
.initialCapacityhive\.ignore\.mapjoin\.hinthive\.limit\.row\.max
\.sizehive\.mapred\.modehive\.map\.aggrhive\.compute\.query\.usi
ng\.statshive\.exec\.rowoffsethive\.variable\.substitutehive\.va
riable\.substitute\.depthhive\.autogen\.columnalias\.prefix\.inc
ludefuncnamehive\.autogen\.columnalias\.prefix\.labelhive\.exec\
.check\.crossproductshive\.cli\.tez\.session\.asynchive\.compath
ive\.exec\.concatenate\.check\.indexhive\.display\.partition\.co
ls\.separatelyhive\.error\.on\.empty\.partitionhive\.execution\.
enginehive\.exec\.copyfile\.maxsizehive\.exim\.uri\.scheme\.whit
elisthive\.file\.max\.footerhive\.insert\.into\.multilevel\.dirs
hive\.localize\.resource\.num\.wait\.attemptshive\.multi\.insert
\.move\.tasks\.share\.dependencieshive\.support\.quoted\.identif
iershive\.resultset\.use\.unique\.column\.nameshive\.analyze\.st
mt\.collect\.partlevel\.statshive\.exec\.schema\.evolutionhive\.
server2\.logging\.operation\.levelhive\.server2\.thrift\.results
et\.serialize\.in\.taskshive\.support\.special\.characters\.tabl
enamehive\.exec\.job\.debug\.capture\.stacktraceshive\.exec\.job
\.debug\.timeouthive\.llap\.io\.enabledhive\.llap\.io\.use\.file
id\.pathhive\.llap\.daemon\.service\.hostshive\.llap\.execution\
.modehive\.llap\.auto\.allow\.uberhive\.llap\.auto\.enforce\.tre
ehive\.llap\.auto\.enforce\.vectorizedhive\.llap\.auto\.enforce\
.statshive\.llap\.auto\.max\.input\.sizehive\.llap\.auto\.max\.o
utput\.sizehive\.llap\.skip\.compile\.udf\.checkhive\.llap\.clie
nt\.consistent\.splitshive\.llap\.enable\.grace\.join\.in\.llaph
ive\.llap\.allow\.permanent\.fnshive\.exec\.max\.created\.filesh
ive\.exec\.reducers\.maxhive\.reorder\.nway\.joinshive\.output\.
file\.extensionhive\.exec\.show\.job\.failure\.debug\.infohive\.
exec\.tasklog\.debug\.timeouthive\.query\.id

After upgrade:

hive\.auto\..*hive\.cbo\..*hive\.convert\..*hive\.druid\..*hive\
.exec\.dynamic\.partition.*hive\.exec\.max\.dynamic\.partitions.
*hive\.exec\.compress\..*hive\.exec\.infer\..*hive\.exec\.mode.l
ocal\..*hive\.exec\.orc\..*hive\.exec\.parallel.*hive\.exec\.que
ry\.redactor\..*hive\.explain\..*hive\.fetch.task\..*hive\.group
by\..*hive\.hbase\..*hive\.index\..*hive\.index\..*hive\.interme

12

CDP Private Cloud Migrating Hive workloads from CDH

diate\..*hive\.jdbc\..*hive\.join\..*hive\.limit\..*hive\.log\..
*hive\.mapjoin\..*hive\.merge\..*hive\.optimize\..*hive\.materia
lizedview\..*hive\.orc\..*hive\.outerjoin\..*hive\.parquet\..*hi
ve\.ppd\..*hive\.prewarm\..*hive\.query\.redaction\..*hive\.serv
er2\.thrift\.resultset\.default\.fetch\.sizehive\.server2\.proxy
\.userhive\.skewjoin\..*hive\.smbjoin\..*hive\.stats\..*hive\.st
rict\..*hive\.tez\..*hive\.vectorized\..*hive\.query\.reexecutio
n\..*reexec\.overlay\..*fs\.defaultFSssl\.client\.truststore\.lo
cationdistcp\.atomicdistcp\.ignore\.failuresdistcp\.preserve\.st
atusdistcp\.preserve\.rawxattrsdistcp\.sync\.foldersdistcp\.dele
te\.missing\.sourcedistcp\.keystore\.resourcedistcp\.liststatus\
.threadsdistcp\.max\.mapsdistcp\.copy\.strategydistcp\.skip\.crc
distcp\.copy\.overwritedistcp\.copy\.appenddistcp\.map\.bandwidt
h\.mbdistcp\.dynamic\..*distcp\.meta\.folderdistcp\.copy\.listin
g\.classdistcp\.filters\.classdistcp\.options\.skipcrccheckdistc
p\.options\.mdistcp\.options\.numListstatusThreadsdistcp\.option
s\.mapredSslConfdistcp\.options\.bandwidthdistcp\.options\.overw
ritedistcp\.options\.strategydistcp\.options\.idistcp\.options\.
p.*distcp\.options\.updatedistcp\.options\.deletemapred\.map\..*
mapred\.reduce\..*mapred\.output\.compression\.codecmapred\.job\
.queue\.namemapred\.output\.compression\.typemapred\.min\.split\
.sizemapreduce\.job\.reduce\.slowstart\.completedmapsmapreduce\.
job\.queuenamemapreduce\.job\.tagsmapreduce\.input\.fileinputfor
mat\.split\.minsizemapreduce\.map\..*mapreduce\.reduce\..*mapred
uce\.output\.fileoutputformat\.compress\.codecmapreduce\.output\
.fileoutputformat\.compress\.typeoozie\..*tez\.am\..*tez\.task\.
.*tez\.runtime\..*tez\.queue\.namehive\.transpose\.aggr\.joinhiv
e\.exec\.reducers\.bytes\.per\.reducerhive\.client\.stats\.count
ershive\.exec\.default\.partition\.namehive\.exec\.drop\.ignoren
onexistenthive\.counters\.group\.namehive\.default\.fileformat\.
managedhive\.enforce\.bucketmapjoinhive\.enforce\.sortmergebucke
tmapjoinhive\.cache\.expr\.evaluationhive\.query\.result\.filefo
rmathive\.hashtable\.loadfactorhive\.hashtable\.initialCapacityh
ive\.ignore\.mapjoin\.hinthive\.limit\.row\.max\.sizehive\.mapre
d\.modehive\.map\.aggrhive\.compute\.query\.using\.statshive\.ex
ec\.rowoffsethive\.variable\.substitutehive\.variable\.substitut
e\.depthhive\.autogen\.columnalias\.prefix\.includefuncnamehive\
.autogen\.columnalias\.prefix\.labelhive\.exec\.check\.crossprod
uctshive\.cli\.tez\.session\.asynchive\.compathive\.display\.par
tition\.cols\.separatelyhive\.error\.on\.empty\.partitionhive\.e
xecution\.enginehive\.exec\.copyfile\.maxsizehive\.exim\.uri\.sc
heme\.whitelisthive\.file\.max\.footerhive\.insert\.into\.multil
evel\.dirshive\.localize\.resource\.num\.wait\.attemptshive\.mul
ti\.insert\.move\.tasks\.share\.dependencieshive\.query\.results
\.cache\.enabledhive\.query\.results\.cache\.wait\.for\.pending\
.resultshive\.support\.quoted\.identifiershive\.resultset\.use\.
unique\.column\.nameshive\.analyze\.stmt\.collect\.partlevel\.st
atshive\.exec\.schema\.evolutionhive\.server2\.logging\.operatio
n\.levelhive\.server2\.thrift\.resultset\.serialize\.in\.taskshi
ve\.support\.special\.characters\.tablenamehive\.exec\.job\.debu
g\.capture\.stacktraceshive\.exec\.job\.debug\.timeouthive\.llap
\.io\.enabledhive\.llap\.io\.use\.fileid\.pathhive\.llap\.daemon
\.service\.hostshive\.llap\.execution\.modehive\.llap\.auto\.all
ow\.uberhive\.llap\.auto\.enforce\.treehive\.llap\.auto\.enforce
\.vectorizedhive\.llap\.auto\.enforce\.statshive\.llap\.auto\.ma
x\.input\.sizehive\.llap\.auto\.max\.output\.sizehive\.llap\.ski
p\.compile\.udf\.checkhive\.llap\.client\.consistent\.splitshive
\.llap\.enable\.grace\.join\.in\.llaphive\.llap\.allow\.permanen
t\.fnshive\.exec\.max\.created\.fileshive\.exec\.reducers\.maxhi
ve\.reorder\.nway\.joinshive\.output\.file\.extensionhive\.exec\
.show\.job\.failure\.debug\.infohive\.exec\.tasklog\.debug\.time
outhive\.query\.idhive\.query\.tag

13

CDP Private Cloud Migrating Hive workloads from CDH

hive.security.command.whitelist

Before upgrade: set,reset,dfs,add,list,delete,reload,compile

After upgrade: set,reset,dfs,add,list,delete,reload,compile,llap

hive.server2.enable.doAs

Before upgrade: TRUE (in case of an insecure cluster only)

After upgrade: FALSE (in all cases)

Affects only insecure clusters by turning off impersonation. Permission issues are expected to arise
for affected clusters.

hive.server2.idle.session.timeout

Before upgrade: 12 hours

After upgrade: 24 hours

Exception:Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.server2.max.start.attempts

Before upgrade: 30

After upgrade: 5

hive.server2.parallel.ops.in.session

Before upgrade: TRUE

After upgrade: FALSE

A Tez limitation requires disabling this property; otherwise, queries submitted concurrently on a
single JDBC connection fail or execute slower.

hive.server2.support.dynamic.service.discovery

Before upgrade: FALSE

After upgrade: TRUE

hive.server2.tez.initialize.default.sessions

Before upgrade: FALSE

After upgrade: TRUE

hive.server2.thrift.max.worker.threads

Before upgrade: 100

After upgrade: 500

Exception: Preserves pre-upgrade value if the old default is overridden; otherwise, uses new default.

hive.server2.thrift.resultset.max.fetch.size

Before upgrade: 1000

After upgrade: 10000

hive.service.metrics.file.location

Before upgrade: /var/log/hive/metrics-hiveserver2/metrics.log

After upgrade: /var/log/hive/metrics-hiveserver2-hiveontez/metrics.log

This location change is due to a service name change.

hive.stats.column.autogather

Before upgrade: FALSE

After upgrade: TRUE

14

CDP Private Cloud Migrating Hive workloads from CDH

hive.stats.deserialization.factor

Before upgrade: 1

After upgrade: 10

hive.support.special.characters.tablename

Before upgrade: FALSE

After upgrade: TRUE

hive.tez.auto.reducer.parallelism

Before upgrade: FALSE

After upgrade: TRUE

hive.tez.bucket.pruning

Before upgrade: FALSE

After upgrade: TRUE

hive.tez.container.size

Before upgrade: -1

After upgrade: 4096

hive.tez.exec.print.summary

Before upgrade: FALSE

After upgrade: TRUE

hive.txn.manager

Before upgrade: org.apache.hadoop.hive.ql.lockmgr.DummyTxnManager

After upgrade: org.apache.hadoop.hive.ql.lockmgr.DbTxnManager

hive.vectorized.execution.mapjoin.minmax.enabled

Before upgrade: FALSE

After upgrade: TRUE

hive.vectorized.execution.mapjoin.native.fast.hashtable.enabled

Before upgrade: FALSE

After upgrade: TRUE

hive.vectorized.use.row.serde.deserialize

Before upgrade: FALSE

After upgrade: TRUE

Customizing critical Hive configurations
As Administrator, you need property configuration guidelines. You need to know which properties you need to
reconfigure after upgrading. You must understand which the upgrade process carries over from the old cluster to the
new cluster.

The Cloudera upgrade process tries to preserve your Hive configuration property overrides. These overrides are the
custom values you set to configure Hive in the old CDH or HDP cluster. The upgrade process does not perserve all
overrides. For example, a custom value you set for hive.exec.max.dynamic.partitions.pernode is preserved. In the
case of other properties, for example hive.cbo.enable, the upgrade ignores any override and just sets the Cloudera-
recommended value.

The upgrade process does not preserve overrides to the configuration values of the following properties that you
likely need to reconfigure to meet your needs:

15

CDP Private Cloud Migrating Hive workloads from CDH

• hive.conf.hidden.list
• hive.conf.restricted.list
• hive.exec.post.hooks
• hive.script.operator.env.blacklist
• hive.security.authorization.sqlstd.confwhitelist
• hive.security.command.whitelist

The Apache Hive Wiki describes these properties. The values of these properties are lists.

The upgrade process ignores your old list and sets a new generic list. For example, the hive.security.command.whitel
ist value is a list of security commands you consider trustworthy and want to keep. Any overrides of this list that you
set in the old cluster are not preserved. The new default is probably a shorter (more restrictive) list than the original
default you were using in the old cluster. You need to customize this Cloudera to meet your needs.

Check and change each property listed above after upgrading as described in the next topic.

Consider reconfiguring more property values than the six listed above. Even if you did not override the default value
in the old cluster, the Cloudera default might have changed in a way that impacts your work.

Related Information
Hive Configuration Property Changes

Hive Configuration Requirements and Recommendations

Apache Hive Wiki: Configuration Properties

Setting Hive Configuration Overrides
You need to know how to configure the critical customizations that the upgrade process does not preserve from your
old Hive cluster. Referring to your records about your old configuration, you follow steps to set at least six critical
property values.

About this task
By design, the six critical properties that you need to customize are not visible in Cloudera Manager, as you can see
from the Visible in Cloudera Manager column of Configurations Requirements and Recommendations. You use the
Safety Valve to add these properties to hive-site.xml as shown in this task.

Procedure

1. In Cloudera Manager Clusters select the Hive on Tez service. Click Configuration, and search for hive-site.xml.

2. In Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml, click +.

3. In Name, add the hive.conf.hidden.list property.

4. In Value, add your custom list.

5. Customize the other critical properties: hive.conf.restricted.list, hive.exec.post.hooks, hive.script.operator.env.bla
cklist, hive.security.authorization.sqlstd.confwhitelist, hive.security.command.whitelist.

Use hive.security.authorization.sqlstd.confwhitelist.append, for example, to set up the list.

16

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/ug_hive_configuration_changes.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/ug_hive_user_configuration.html
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

CDP Private Cloud Migrating Hive workloads from CDH

6. Save the changes and restart the Hive service.

7. Look at the Configurations Requirements and Recommendations to understand which overrides were preserved or
not.

Related Information
Hive Configuration Property Changes

Hive Configuration Requirements and Recommendations

Apache Hive Wiki: Configuration Properties

Hive Configuration Requirements and Recommendations
You need to set certain Hive and HiveServer (HS2) configuration properties after upgrading. You review
recommendations for setting up Cloudera Base on premises for your needs, and understand which configurations
remain unchanged after upgrading, which impact performance, and default values.

Requirements and Recommendations

The following table includes the Hive service and HiveServer properties that the upgrade process changes. Other
property values (not shown) are carried over unchanged from CDH or HDP to Cloudera

• Set After Upgrade column: properties you need to manually configure after the upgrade to Cloudera. Pre-existing
customized values are not preserved after the upgrade.

• Default Recommended column: properties that the upgrade process changes to a new value that you are strongly
advised to use.

• Impacts Performance column: properties changed by the upgrade process that you set to tune performance.
• Safety Value Overrides column: How the upgrade process handles Safety Valve overrides.

• Disregards: the upgrade process removes any old CDH Safety Valve configuration snippets from the new CDP
configuration.

• Preserves means the upgrade process carries over any old CDH snippets to the new CDP configuration.
• Not applicable means the value of the old parameter is preserved.

• Visible in CM column: property is visible in Cloudera Manager after upgrading. Cloudera Manager after
upgrading.

If a property is not visible, and you want to configure it, use the Cloudera Manager Safety Valve to safely add the
parameter to the correct file, for example to a cluster-wide, hive-site.xml file.

Table 1:

Property Set After
Upgrade

Default
Recommended

Impacts
Performance

New
Feature

Safety Valve Overrides Visible
in CM

datanucleus.connectionPool.maxPoolSize # Preserve

datanucleus.connectionPoolingType # Disregard

hive.async.log.enabled Disregard #

hive.auto.convert.join.noconditionaltask.size Not applicable #

hive.auto.convert.sortmerge.join Preserve

hive.auto.convert.sortmerge.join.to.mapjoin Preserve

hive.cbo.enable Disregard #

hive.cbo.show.warnings Disregard

hive.compactor.worker.threads # Disregard #

hive.compute.query.using.stats # Disregard #

hive.conf.hidden.list # Disregard

hive.conf.restricted.list # Disregard

17

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/ug_hive_configuration_changes.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/ug_hive_user_configuration.html
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

CDP Private Cloud Migrating Hive workloads from CDH

Property Set After
Upgrade

Default
Recommended

Impacts
Performance

New
Feature

Safety Valve Overrides Visible
in CM

hive.default.fileformat.managed Disregard #

hive.default.rcfile.serde # Preserve

hive.driver.parallel.compilation Disregard #

hive.exec.dynamic.partition.mode Disregard

hive.exec.max.dynamic.partitions Preserve

hive.exec.max.dynamic.partitions.pernode Preserve

hive.exec.post.hooks # Disregard

hive.exec.reducers.max # or
other
prime
number

Not applicable #

hive.execution.engine Disregard

hive.fetch.task.conversion # Not applicable #

hive.fetch.task.conversion.threshold # Not appliable #

hive.hashtable.key.count.adjustment # Preserve

hive.limit.optimize.enable # Disregard

hive.limit.pushdown.memory.usage # Not Applicable #

hive.mapjoin.hybridgrace.hashtable # # Disregard

hive.mapred.reduce.tasks.speculative.execution # Disregard

hive.metastore.aggregate.stats.cache.enabled # # Disregard

hive.metastore.disallow.incompatible.col.type.changes Disregard

hive.metastore.dml.events Disregard #

hive.metastore.event.message.factory # Disregard

hive.metastore.uri.selection # Disregard

hive.metastore.warehouse.dir Preserve #

hive.optimize.metadataonly # Disregard

hive.optimize.point.lookup.min Disregard

hive.prewarm.numcontainers Disregard

hive.script.operator.env.blacklist # Disregard

hive.security.authorization.sqlstd.confwhitelist# Disregard

hive.security.command.whitelist # Disregard

hive.server2.enable.doAs Disregard #

hive.server2.idle.session.timeout Not applicable #

hive.server2.max.start.attempts Preserve

hive.server2.parallel.ops.in.session Preserve

hive.server2.support.dynamic.service.discovery # Disregard #

hive.server2.tez.initialize.default.sessions # Disregard

hive.server2.thrift.max.worker.threads Not Applicable #

hive.server2.thrift.resultset.max.fetch.size Preserve

hive.service.metrics.file.location Disregard #

18

CDP Private Cloud Migrating Hive workloads from CDH

Property Set After
Upgrade

Default
Recommended

Impacts
Performance

New
Feature

Safety Valve Overrides Visible
in CM

hive.stats.column.autogather # Disregard

hive.stats.deserialization.factor # Disregard

hive.support.special.characters.tablename # Disregard

hive.tez.auto.reducer.parallelism # Disregard #

hive.tez.bucket.pruning # Disregard #

hive.tez.container.size # Disregard #

hive.tez.exec.print.summary # Disregard #

hive.txn.manager # Disregard #

hive.vectorized.execution.mapjoin.minmax.enabled # Disregard

hive.vectorized.execution.mapjoin.native.fast.hashtable.enabled# Disregard

hive.vectorized.use.row.serde.deserialize # Disregard

Configuring HMS for high availability
To provide failover to a secondary Hive metastore if your primary instance goes down, you need to know how to add
a Metastore role in Cloudera Manager and configure a property.

About this task
Multiple HMS instances run in active/active mode. No load balancing occurs. An HMS client always reaches the first
instance unless it is down. In this case, the client scans the hive.metastore.uris property that lists the HMS instances
for a replacement HMS. The second HMS is the designated replacement if hive.metastore.uri.selection is set to
SEQUENTIAL (recommended and the default); otherwise, the replacement is selected randomly from the list if hive
.metastore.uri.selection is set to RANDOM.

Before you begin
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Procedure

1. In Cloudera Manager, click Clusters Hive Configuration .

2. Take one of the following actions:

• If you have a cluster secured by Kerberos, search for Hive Delegation Token Store, which specifies storage for
the Kerberos token as described below.

• If you have an unsecured cluster, skip the next step.

3. Select org.apache.hadoop.hive.thrift.DBTokenStore, and save the change.

Storage for the Kerberos delegation token is defined by the hive.cluster.delegation.token.store.class property.
The available choices are Zookeeper, the Metastore, and memory. Cloudera recommends using the database by
setting the org.apache.hadoop.hive.thrift.DBTokenStore property.

19

CDP Private Cloud Migrating Hive workloads from CDH

4. Click Instances Actions Add Role Instances

5. In Assign Roles, in Metastore Server, click Select Hosts.

6. In Hosts Selected, scroll and select the host that you want to serve as the backup Metastore, and click OK.

7. Click Continue until you exit the wizard.

8. Start the Metastore role on the host from the Actions menu.

The hive.metastore.uris property is updated automatically.

9. To check or to change the hive.metastore.uri.selection property, go to Clusters Hive Configurations , and search
for Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml.

10. Add the property and value (SEQUENTIAL or RANDOM).

Setting up Hive metastore for Atlas
As Administrator, you might plan to recommend Atlas for Hive metadata management and data governance. You
have to check that Hive metastore for Atlas is set up, so users can build catalogs of data assets, classify, and govern
the assets. If Atlas is not set up you learn how to do so. This section is not applicable if you are upgrading to CDP
Private Cloud Base 7.1.7.

About this task
In this task, you set the name of the Atlas service for Hive metastore to use.

Procedure

1. In Cloudera Manager, click Clusters Hive Configurations .

2. Search for Atlas Service.

3. Choose a method based on the results of your search:

• If Cloudera Manager finds the Atlas Service, check the checkbox to enable the Hive Metastore hook in your
Cloudera Manager instance.

• If Cloudera Manager does not find the Atlas Service, in Hive Service Advanced Configuration Snippet (Safety
Valve) for atlas-application properties, enter an XML snippet in the value element that provides the name of
your Atlas service, myatlasservice in the example below.

<property>
 <name>atlas_service</name>
 <value>myatlasservice</value>
</property>

4. Save changes.

5. Restart the Hive metastore service.

20

CDP Private Cloud Migrating Hive workloads from CDH

Changing the Hive warehouse location
You can change the location of the Hive warehouse by using the configuration settings in your Cloudera Manager
instance.

Procedure

1. In Cloudera Manager, click Clusters > Hive (the Hive Metastore service) > Configuration, and change the
hive.metastore.warehouse.dir property value to the path you specified for the new Hive warehouse directory.

2. Change the hive.metastore.warehouse.external.dir property value to the path you specified for the Hive warehouse
external directory.

3. Save the above configuration changes.

In Cloudera Manager, navigate to the Hive service and from the Actions drop-down, run the services:

• Create Hive Warehouse Directory
• Create Hive Warehouse External Directory

4. Restart the required services for the changes to take effect.

Related Information
Ranger RMS Authorization for Hive-HDFS

HDFS ACL Permissions Model

HDFS ACLS

Security tasks
After an in-place upgrade to Cloudera, as Administrator, you might need to perform a few security tasks, depending
on the type of security you set up, Ranger or HDFS Access Control Lists (ACLs), as well as your data encryption
requirements and use of clients to access Hive.

Making the Hive plugin for Ranger visible
After upgrading from HDP or CDH clusters to Cloudera, the Hive plugin for the Hive Metastore and HiveServer2
appears in the Ranger Admin UI unless configuration property problems due to upgrading exist. You can rectify the
incorrect properties to fix the problem.

21

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-rms-configuring-and-using/topics/security-ranger-rms-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_sba_permissions_model.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hdfs-acls/topics/hdfs-acls.html

CDP Private Cloud Migrating Hive workloads from CDH

About this task
If the Hive Metastore plugin does not appear in the Ranger Admin UI, you must remove the following property
settings from Hive Metastore hive-site.xml safety valve:

• hive.security.authorization.enabled
• hive.security.authorization.manager
• hive.security.metastore.authorization.manager

If the HiveServer2 plugin does not appear in the Ranger Admin UI, you must remove the following property settings
from HiveServer2 hive-site.xml safety valve:

• hive.security.authorization.enabled
• hive.security.authorization.manager
• hive.security.metastore.authorization.manager
• hive.security.authenticator.manager

After removing these configuration properties, restart the Hive Metastore and HiveServer2 services from Cloudera
Manager. Next, you must check whether the Ranger Hive Metastore and HiveServer2 plugins are enabled
successfully. To do so:

Procedure

1. From Cloudera Manager, go to Clusters Ranger Ranger Admin Web UI Audit Plugin Status .

The Hadoop SQL service type for the hiveMetastore and hiveServer2 applications should appear. If so, skip the
next step. Your configuration is ok.

22

CDP Private Cloud Migrating Hive workloads from CDH

2. If, after removing the Hive Metastore and HiveServer2 configuration properties from the respective hive-ste.xml
safety valves, the Hive Metastore and HiveServer2 plugins are NOT visible, you must confirm whether or not the
following configuration properties appear in hive-site.xml:

For Hive Metastore, confirm whether or not the following key-value pair appears in hive-site.xml:

Key: hive.metastore.pre.event.listeners

Value: org.apache.hadoop.hive.ql.security.authorization.plugin.metastore.HiveMetaStoreAuthorizer

If this key-value pair does not appear in hive-site.xml, then add it to the Hive Metastore hive-site.xml safety valve.

For HiveServer2, confirm whether or not the following key value pair appears in hive-site.xml:

Key: hive.security.authenticator.manager

Value: org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator

If this key-value pair does not appear in hive-site.xml, then add it to the HiveServer2 hive-site.xml safety valve.

Configuring authorization to tables
Although the upgrade process makes no change to the location of external tables, you need to set up access to external
tables in HDFS. If you choose the recommended Ranger security model for authorization, you need to set up policies
and configure Hive metastore (HMS).

About this task

Set up access to external tables in HDFS using one of the following methods.

• Set up a Hive HDFS policy in Ranger (recommended) to include the paths to external table data.
• Put an HDFS ACL in place. Store the external text file, for example a comma-separated values (CSV) file, in

HDFS that will serve as the data source for the external table.

If you want to use Ranger to authorize access to your tables, you must configure a few HMS properties for
authorization in addition to setting up Ranger policies. If you have not configured HMS, attempting to create a table
using Spark SQL, Beeline, or Hue results in the following error:

org.apache.hadoop.hive.ql.ddl.DDLTask. MetaException(message:No privilege 'C
reate' found for outputs { database:DATABASE_NAME, table:TABLE_NAME})

Related Information
Authorizing Apache Hive Access

Configuring HMS properties for authorization

Setting up access control lists
Several sources of information about setting up HDFS ACLS plus a brief Ranger overview and pointer to Ranger
information prepare you to set up Hive authorization.

In Cloudera Base on premises, HDFS supports POSIX ACLs (Access Control Lists) to assign permissions to users
and groups. In lieu of Ranger policies, you use HDFS ACLs to check and make any necessary changes in HDFS
permission changes. For more information, see HDFS ACLs, Apache Software Foundation HDFS Permissions Guide,
and HDFS ACL Permissions.

In Ranger, you give multiple groups and users specific permissions based on your use case. You apply permissions to
a directory tree instead of dealing with individual files. For more information, see Authorizing Apache Hive Access.

If possible, you should use Ranger policies over HDFS ACLs to control HDFS access. Controlling HDFS access
through Ranger provides a single, unified interface for understanding and managing your overall governance
framework and policy design. If you need to mimic the legacy Sentry HDFS ACL Sync behavior for Hive and Impala
tables, consider using Ranger RMS.

Related Information
Ranger RMS Authorization for Hive-HDFS

23

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_hive_authorization_models.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-metastore/topics/hive-hms-add-property.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-rms-configuring-and-using/topics/security-ranger-rms-overview.html

CDP Private Cloud Migrating Hive workloads from CDH

HDFS ACLS

Apache Hive 3 Architectural Overview

Configure a Resource-based Policy: Hive

HDFS ACL Permissions Model

Configure encryption zone security
Under certain conditions, you as Administrator, need to perform a security-related task to allow users to access to
tables stored in encryption zones. You find out how to prevent access problems to these tables.

About this task
Hive on Tez cannot run some queries on tables stored in encryption zones under certain conditions. Perform the
following procedure only when the cluster uses self-signed certificates.

Important: Skip this task for clusters where TLS certificates are properly signed by a Certificate Authority
(CA), and the CA is in the truststore files.

Procedure

1. Copy the ssl-client.xml file to a directory that is available on all hosts.

2. In Cloudera Manager, click Clusters Hive on Tez Configuration .

3. Search for the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting.

4.
In the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting, click .

5. In Name enter the property tez.aux.uris and in value enter path-to-ssl-client.xml.

Ensure that you include the file URI scheme in the path. For example:

tez.aux.uris=file:///etc/hadoof/conf

Configure edge nodes as gateways
If you use command-line clients, such as Sqoop, to access Hive, you must configure these gateways to use defaults
for your service. You can accomplish this task in a few steps.

About this task
By default, the HS2 instances configured in the migration already have the default beeline-site.xml file defined for the
service. Other hosts do not. Configure these hosts as a gateway for that service.

Procedure

1. Find the notes you made before the upgrade about edge nodes and default, connected endpoints.

2. In Cloudera Manager, configure hosts other than HiveServer (HS2) hosts that you want to be Hive Gateway nodes
as gateways for the default beeline-site.xml file for the gateway service.

Configure HiveServer HTTP mode
If you use Knox, you might need to change the HTTP mode configuration. If you installed Knox on Cloudera Base
on premises and want to proxy HiveServer with Knox, you need to change the default HiveServer transport mode
(hive.server2.transport.mode).

Procedure

1. Click Cloudera Manager Clusters HIVE_ON_TEZ Configuration

2. In Search, type transport.

24

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hdfs-acls/topics/hdfs-acls-examples.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive-apache-hive-3-architectural-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_sba_permissions_model.html

CDP Private Cloud Migrating Hive workloads from CDH

3. In HiveServer2 Transport Mode, select http.

4. Save and restart Hive on Tez.

Key syntax changes
You need to modify queries affected by changes to Hive syntax after upgrading to Cloudera. Hive has changed the
syntax related to `db.table` references, such as CREATE TABLE `mydb.mytable` … . Other syntax changes involve
the LOCATION clause in CREATE TABLE. Hive in Cloudera supports the enhancement to CREATE TABLE that
adds the MANAGEDLOCATION clause.

Handling table reference syntax
For ANSI SQL compliance, Hive 3.x rejects `db.table` in SQL queries as described by the Hive-16907 bug fix.
A dot (.) is not allowed in table names. As a Data Engineer, you need to ensure that Hive tables do not contain
these references before migrating the tables to Cloudera, that scripts are changed to comply with the SQL standard
references, and that users are aware of the requirement.

About this task

To change queries that use such `db.table` references thereby preventing Hive from interpreting the entire db.table
string incorrectly as the table name, you enclose the database name and the table name in backticks as follows:

A dot (.) is not allowed in table names.

Procedure

1. Find a table having the problematic table reference.
For example, math.students appears in a CREATE TABLE statement.

2. Enclose the database name and the table name in backticks.

CREATE TABLE `math`.`students` (name VARCHAR(64), age INT, gpa DECIMAL(3
,2));

LOCATION and MANAGEDLOCATION clauses
Before upgrading, your Hive version might have supported using the LOCATION clause in queries to create either
managed or external tables or databases for managed and external tables. After upgrading, Hive stores managed
and external tables in separate HDFS locations. CREATE TABLE limits the use of the LOCATION clause, and
consequently requires a change to your queries. Hive in Cloudera also supports a new location-related clause.

25

CDP Private Cloud Migrating Hive workloads from CDH

External table limitation for creating table locations

Hive assigns a default location in the warehouse for external tables—/warehouse/tablespace/external/hive. In
Cloudera, Hive does not allow the LOCATION clause in queries to create a managed table. Using this clause, you can
specify a location only when creating external tables. For example:

CREATE EXTERNAL TABLE my_external_table (a string, b string)
ROW FORMAT SERDE 'com.mytables.MySerDe'
WITH SERDEPROPERTIES ("input.regex" = "*.csv")
LOCATION '/warehouse/tablespace/external/hive/marketing';

Table MANAGEDLOCATION clause

In Cloudera, Hive has been enhanced to include a MANAGEDLOCATION clause to specify the location of managed
tables as shown in the following syntax:

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name
 [COMMENT database_comment]
 [LOCATION external_table_path]
 [MANAGEDLOCATION managed_table_directory_path]
 [WITH DBPROPERTIES (property_name=property_value, ...)];

Hive assigns a default location in the warehouse for managed tables—/warehouse/tablespace/managed/hive. In the
MANAGEDLOCATION clause, you specify a top level directory for managed tables when creating a Hive database.

Important: Do not use the LOCATION clause to specify the location of managed tables. This clause is only
used to specify the location of external tables. Use the MANAGEDLOCATION clause if you are creating
managed tables. You must also ensure that you do not set LOCATION and MANAGEDLOCATION to the
same HDFS path.

Use DESCRIBE DATABASE db_name; to view the root location of the database on the filesystem.

Related Information
Create a default directory for managed tables

Key semantic changes and workarounds
As SQL Developer, Analyst, or other Hive user, you need to know potential problems with queries due to semantic
changes. Some of the operations that changed were not widely used, so you might not encounter any of the problems
associated with the changes.

Over the years, Apache Hive committers enhanced versions of Hive supported in legacy releases of CDH and HDP,
with users in mind. Changes were designed to maintain compatibility with Hive applications. Consequently, few
syntax changes occurred over the years. A number of semantic changes, described in this section did occur, however.
Workarounds are described for these semantic changes.

Changing incompatible column types
A default configuration change can cause applications that change column types to fail.

Before Upgrade to Cloudera

In HDP 2.x and CDH 5.x and CDH 6 hive.metastore.disallow.incompatible.col.type.changes is false by default to
allow changes to incompatible column types. For example, you can change a STRING column to a column of an
incompatible type, such as MAP<STRING, STRING>. No error occurs.

After Upgrade to Cloudera

In Cloudera, hive.metastore.disallow.incompatible.col.type.changes is true by default. Hive prevents changes to
incompatible column types. Compatible column type changes, such as INT, STRING, BIGINT, are not blocked.

Action Required

26

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_managed_location.html

CDP Private Cloud Migrating Hive workloads from CDH

Change applications to disallow incompatible column type changes to prevent possible data corruption. Check
ALTER TABLE statements and change those that would fail due to incompatible column types.

Understanding CREATE TABLE behavior
Hive table creation has changed significantly since Hive 3 to improve useability and functionality. If you are
upgrading from CDH or HDP, you must understand the changes affecting legacy table creation behavior.

Hive has changed table creation in the following ways:

• Creates ACID-compliant table, which is the default in Cloudera
• Supports simple writes and inserts
• Writes to multiple partitions
• Inserts multiple data updates in a single SELECT statement
• Eliminates the need for bucketing.

If you have an ETL pipeline that creates tables in Hive, the tables will be created as ACID. Hive now tightly controls
access and performs compaction periodically on the tables. Using ACID-compliant, transactional tables causes no
performance or operational overload. The way you access managed Hive tables from Spark and other clients changes.
In Cloudera, access to external tables requires you to set up security access permissions.

You must understand the behavior of the CREATE TABLE statement in legacy platforms like CDH or HDP and how
the behavior changes after you upgrade to Cloudera.

Before upgrading to Cloudera Base on premises

In CDH 5, CDH 6, and HDP 2, by default CREATE TABLE creates a non-ACID managed table in plain text format.

In HDP 3 and CDP 7.1.0 through 7.1.7.x, by default CREATE TABLE creates either a full ACID transactional table
in ORC format or insert-only ACID transactional tables for all other table formats.

After upgrading to Cloudera Base on premises

• If you are upgrading from HDP 2, CDH 5, or CDH 6 to CDP 7.1.0 through CDP 7.1.8, by default CREATE
TABLE creates a full ACID transactional table in ORC format or insert-only ACID transactional tables for all
other table formats.

• If you are upgrading from HDP 3 or CDP 7.1.0 through 7.1.7.x to CDP 7.1.8, the existing behavior persists and
CREATE TABLE creates either a full ACID transactional table in ORC format or insert-only ACID transactional
tables for all other table formats.

Now that you understand the behavior of the CREATE TABLE statement, you can choose to modify the default table
behavior by configuring certain properties. The order of preference for configuration is as follows:

Modify the default CREATE TABLE behavior
Override default behavior when creating the table

Irrespective of the database, session, or site-level settings, you can override the default table
behavior by using the MANAGED or EXTERNAL keyword in the CREATE TABLE statement.

CREATE [MANAGED][EXTERNAL] TABLE foo (id INT);

Set the default table type at a database level

You can use the database property, defaultTableType=EXTERNAL or ACID to specify the default
table type to be created using the CREATE TABLE statement. You can specify this property when
creating the database or at a later point using the ALTER DATABASE statement. For example:

CREATE DATABASE test_db WITH DBPROPERTIES ('defaultTableType'='E
XTERNAL');

27

CDP Private Cloud Migrating Hive workloads from CDH

In this example, tables created under the test_db database using the CREATE TABLE statement
creates external tables with the purge fucntionality enabled (external.table.purge = 'true').

You can also choose to configure a database to allow only external tables to be created and prevent
creation of ACID tables. While creating a database, you can set the database property, EXTER
NAL_TABLES_ONLY=true to ensure that only external tables are created in the database. For
example:

CREATE DATABASE test_db WITH DBPROPERTIES ('EXTERNAL_TABLES_ONLY
'='true');

Set the default table type at a session level

You can configure the CREATE TABLE behavior within an existing beeline session by setting
hive.create.as.external.legacy to true or false. Setting the value to true results in configuring the
CREATE TABLE statement to create external tables by default.

When the session ends, the default CREATE TABLE behavior also ends.

Set the default table type at a site level

You can configure the CREATE TABLE behavior at the site level by configuring the hive.create.
as.insert.only and hive.create.as.acid properties in Cloudera Manager under Hive configuration.
When configured at the site level, the behavior persists from session to session. For more
information, see Configuring CREATE TABLE behavior.

If you are a Spark user, switching to legacy behavior is unnecessary. Calling ‘create table’ from SparkSQL, for
example, creates an external table after upgrading to Cloudera as it did before the upgrade. You can connect to Hive
using the Hive Warehouse Connector (HWC) to read Hive ACID tables from Spark. To write ACID tables to Hive
from Spark, you use the HWC and HWC API. Spark creates an external table with the purge property when you do
not use the HWC API. For more information, see Hive Warehouse Connector for accessing Spark data.

Related Information
HDFS ACLS

Hive Warehouse Connector for accessing Apache Spark data

Spark Direct Reader for accessing Spark data

Apache Hive 3 Key Features

Apache Hive 3 Tables

Configuring legacy CREATE TABLE behavior
After you upgrade to Cloudera Base on premises and migrate old tables, the legacy CREATE TABLE behavior of
Hive is no longer available by default and you might want to switch to the legacy behavior. Legacy behavior might
solve compatibility problems with your scripts during data migration, for example, when running ETL.

About this task
In Cloudera, running a CREATE TABLE statement by default creates a full ACID table for ORC file format and
insert-only ACID table for other file formats. You can change the default behavior to use the legacy CREATE
TABLE behavior. When you configure legacy behavior, CREATE TABLE creates external tables with the purge
functionality enabled (external.table.purge = 'true'). Therefore, when the table is dropped, data is also deleted from the
file system.

You can configure legacy CREATE TABLE behavior at the site level by configuring properties in Cloudera Manager.
When configured at the site level, the behavior persists from session to session.

Procedure

1. In Cloudera Manager, click Clusters and select the Hive on Tez service.

28

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hdfs-acls/topics/hdfs-acls-examples.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_spark_direct_reader.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive_whats_new_in_this_release_hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_hive_3_tables.html

CDP Private Cloud Migrating Hive workloads from CDH

2. From the Hive on Tez service, go to the Configuration tab and search for hive.create.

3. If the following properties are selected, clear the selection to enable legacy CREATE TABLE behavior.

• Default Table Format - Create Tables as ACID Insert Only (hive.create.as.insert.only)
• Default Table Format - Create Tables as Full ACID (hive.create.as.acid)

Results
Legacy behavior is enabled and the CREATE TABLE statement now creates external tables with the external.table.p
urge table property set to true.
Related Information
Change DROP behavior

Dropping partitions
The OFFLINE and NO_DROP keywords in the CASCADE clause for dropping partitions causes performance
problems and is no longer supported.

Before Upgrade to Cloudera Base on premises

You could use OFFLINE and NO_DROP keywords in the DROP CASCADE clause to prevent partitions from being
read or dropped.

After Upgrade to Cloudera Base on premises

OFFLINE and NO_DROP are not supported in the DROP CASCADE clause.

Action Required

Change applications to remove OFFLINE and NO_DROP from the DROP CASCADE clause. Use an authorization
scheme, such as Ranger, to prevent partitions from being dropped or read.

Handling the Keyword APPLICATION
If you use the keyword APPLICATION in your queries, you might need to modify the queries to prevent failure.

To prevent a query that uses a keyword from failing, enclose the query in backticks.

Before Upgrade to Cloudera Base on premises

In CDH releases, such as CDH 5.13, queries that use the word APPLICATION in queries execute successfully. For
example, you could use this word as a table name.

> select f1, f2 from application

29

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_drop_external_table_data.html

CDP Private Cloud Migrating Hive workloads from CDH

After Upgrade to Cloudera Base on premises

A query that uses the keyword APPLICATION fails.

Action Required

Change applications. Enclose queries in backticks. SELECT field1, field2 FROM `application`;

Handling output of greatest and least functions
To calculate the greatest (or least) value in a column, you need to work around a problem that occurs when the
column has a NULL value.

Before Upgrade to Cloudera

The greatest function returned the highest value of the list of values. The least function returned the lowest value of
the list of values.

After Upgrade to Cloudera

Returns NULL when one or more arguments are NULL.

Action Required

Use NULL filters or the nvl function on the columns you use as arguments to the greatest or least functions.

SELECT greatest(nvl(col1,default value incase of NULL),nvl(col2,default valu
e incase of NULL));

Renaming tables
To harden the system, Hive data can be stored in HDFS encryption zones. RENAME has been changed to prevent
moving a table outside the same encryption zone or into a no-encryption zone.

Before Upgrade to Cloudera

In CDH and HDP, renaming a managed table moves its HDFS location.

After Upgrade to Cloudera

Renaming a managed table moves its location only if the table is created without a LOCATION clause and is under
its database directory.

Action Required

None

TRUNCATE TABLE on an external table
Hive 3 does not support TRUNCATE TABLE on external tables. Truncating an external table results in an error. You
can truncate an external table if you change your applications to set a table property to purge data.

Before Upgrade to Cloudera

Some legacy versions of Hive supported TRUNCATE TABLE on external tables.

After Upgrade to Cloudera Base on premises

By default, TRUNCATE TABLE is supported only on managed tables. Attempting to truncate an external table
results in the following error:

Error: org.apache.spark.sql.AnalysisException: Operation not allowed: TRUNCA
TE TABLE on external tables

Action Required

Change applications. Do not attempt to run TRUNCATE TABLE on an external table.

30

CDP Private Cloud Migrating Hive workloads from CDH

Alternatively, change applications to alter a table property to set external.table.purge to true to allow truncation of an
external table:

ALTER TABLE mytable SET TBLPROPERTIES ('external.table.purge'='true');

Other syntax and semantic changes
In addition to the key Hive syntax and semantic changes, there are a number of other Hive changes in Cloudera you
need to know about after migrating to Cloudera from CDH. The other changes are covered release by release.

Several of the other changes are the result of Cloudera being based on Apache Hive 3, which is closer to SQL
standards than earlier versions of Hive, which CDH was based on.

The documentation includes a workaround if there is one.

Related Information
Key syntax changes

Key semantic changes in Hive

Syntax and semantic changes CDH 6.2.1 to CDP 7.0.3.2
Review the syntax and semantic changes in Hive after migrating to CDP 7.0.3.2 from CDH 6.2.1. A link to Apache
Hive JIRAs, if there is one, provides more information about the semantic change.

Aliasing tables
Hive 3 in CDP follows the SQL 11 standard regarding a table identifier, which cannot begin with a numeral.

Before Upgrade to CDP

In CDH, using a table alias that begins with a numeral did not cause an error:

select * from db.t1 5d;

After Upgrade to CDP

In CDP, using a table alias that begins with a numeral causes an error:

select * from db.t1 5d;

Output looks something like this:

Error: Error while compiling statement: ...

Action Required

Perform either one of the following workarounds:

• Rename the table that begins with a numeral to conform to the SQL 11 standard.
• Enclose the table that begins with a numeral in backticks.

For more information, see Handling table reference syntax.

ANALYZE TABLE ... COMPUTE STATISTICS PARTIALSCAN removed
The analyze command collects statistics on tables and partitions, but is slow when scanning many files. A command
was added that operated on files in RCfile format to speed up statistics collection. The command was not widely used,
not well documented, and evenutally removed.

Before Upgrade to CDP

31

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-khub-syntax-changes.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/cdp_data_migration_hive_semantics.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/cdp-data-migration-dbtable.html

CDP Private Cloud Migrating Hive workloads from CDH

ANALYZE TABLE ... COMPUTE STATISTICS PARTIALSCAN was added to Hive to collect statistics, not
by scanning all content of files, but by scanning only parts to get file metadata. Examples are shown in https://
cwiki.apache.org/confluence/display/Hive/RCFileCat.

After Upgrade to CDP

HIVE-17652 removes this syntax in release 3.0.0.

Action Required

In the unlikely event you used this command, remove it from your code.

Decimal to string change
Hive decimal to string conversion yields results having incorrect padding. LPAD on a decimal(7,1) value of 0 returns
"0" (plus padding) but it should be "0.0" (plus padding).

Before Upgrade to CDP

Decimal to string conversion incorrectly formats the padding of the result.

select cast(cast('3404045.5044003' as decimal(18,9)) as string);

Output is: 3404045.5044003

After Upgrade to CDP

HIVE-20082 corrected the problem. Output of the query above correctly pads the result to 9 digits after the decimal
point: 3404045.504400300

Decimal literals
The default treatment of Decimal literals in Hive was changed from Double to Decimal as per the SQL standards.

Before upgrade to CDP

Decimal value is displayed as a rounded value when you run a SELECT statement where column = decimal value.
For example,

create table test (dc decimal(38,18));
insert into table test values (4327269606205.029297);

select * from test;
Output:
+-----------------------------------+--+
| test.dc |
+-----------------------------------+--+
| 4327269606205.029297000000000000 |
+-----------------------------------+--+

select * from test where dc = 4327269606205.029297000000000000;
Output:
+-----------------------------------+--+
| test.dc |
+-----------------------------------+--+
| 4327269606205.029300000000000000 |
+-----------------------------------+--+

After upgrade to CDP

The fix changed the default treatment of Decimal literals in Hive and now prefers Decimal over Double.

This fix also influences other functions which accept such numeric values as parameters. For example:

select coalesce(2.0, ‘EMPTY’)

32

https://cwiki.apache.org/confluence/display/Hive/RCFileCat
https://cwiki.apache.org/confluence/display/Hive/RCFileCat
https://issues.apache.org/jira/browse/HIVE-17652
https://issues.apache.org/jira/browse/HIVE-20082

CDP Private Cloud Migrating Hive workloads from CDH

The coalesce functions' return type in this expression is string. In CDH, 2.0 was parsed as Java double and returned
‘2.0’. In CDP, it is parsed as HiveDecimal(1,0) and therefore returns ‘2’.

For more information, see HIVE-13945.

hive.stats.collect.rawdatasize removal
In an early release of Hive, the hive.stats.collect.rawdatasize property collected statistics when set to true. As Hive
matured, hive.stats.autogather was added to gather statistics when data is inserted into tables.

Before Upgrade to CDP

In Hive 0.8, HIVE-2185 added the hive.stats.collect.rawdatasize to collect the raw data size of a table when analyzing
the table.

After Upgrade to CDP

In Hive 2.1.0 the hive.stats.collect.rawdatasize property was removed (HIVE-13564).

HIVE_SUPPORT_SQL11_RESERVED_KEYWORDS
To simplify the parser logic and largely reduce the size of generated parser code, the
HIVE_SUPPORT_SQL11_RESERVED_KEYWORDS configuration has been removed.

Before Upgrade to CDP

HIVE-14872 removed support for this configuration in Hive 2.3.
HIVE_SUPPORT_SQL11_RESERVED_KEYWORDS configuration offered backward compatibility. Reserved
keywords were used as identifiers in the previous releases.

After Upgrade to CDP

Cloudera releases support later versions of Hive that do not support the configuration.

Limit scanned partitions
Before Hive 1.0 a configuration property was added for limited scanned partitions that was replaced by another
property.

Before Upgrade to CDP

To protect the cluster, the hive.limit.query.max.table.partition configuration property was added to Hive. The property
limits the table partitions involved in a table scan. In Hive 2.2.0, the hive.metastore.limit.partition.request was added
to replace the hive.limit.query.max.table.partition. The hive.limit.query.max.table.partition support was deprecated.

After Upgrade to CDP

In Hive 3, support for hive.limit.query.max.table.partition was removed (HIVE-17965). Only replacement
hive.metastore.limit.partition.request is supported to limit the number of partitions that can be requested from the
Metastore for a table. A query is not executed if it fetches more partitions per table than the limit configured. A value
of -1 means unlimited.

Action Required

Find any settings of hive.limit.query.max.table.partition and change your code to use
hive.metastore.limit.partition.request.

Overflow handling of decimals
An ArrayIndexOutOfBoundsException is returned when a sum operation on a decimal column overflows beyond the
maximum precision.

Before upgrade to CDP

When a column is defined as decimal and a sum operation on that column overflows beyond the maximum decimal
precision (38), the an exception occurs:

create table decimal_precision(dec decimal(38,18));
insert into decimal_precision values(98765432109876543210.12345), (987654321
09876543210.12345);

33

https://issues.apache.org/jira/browse/HIVE-13945
https://issues.apache.org/jira/browse/HIVE-2185
https://issues.apache.org/jira/browse/HIVE-13564
https://issues.apache.org/jira/browse/HIVE-14872
https://issues.apache.org/jira/browse/HIVE-17965
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.metastore.limit.partition.request

CDP Private Cloud Migrating Hive workloads from CDH

select sum(dec) from decimal_precision;

This query fails with an ArrayIndexOutOfBoundsException.

After upgrade to CDP

HIVE-13423 handles this issue by displaying a warning message and returning NULL when the result of a SUM
operation on a decimal column goes beyond the decimal precision range.

Functions that changed
A number of changes to Hive functions occurred in CDP.

When creating a UDF, you must extend the GenericUDF class. For more information, see Creating the UDF class. A
number of changes to built-in functions described in this documentation also occurred.

ACOS(2) and ASIN(2) return NULL
A change in the result of ACOS(2) and ASIN(2) occurred between CDH and CDP.

Before Upgrade to CDP

The ACOS(2) and ASIN(2) functions returned NAN as shown in the following example:

select acos(2);
NaN

After Upgrade to CDP

HIVE-17240 makes the ACOS(2) and ASIN(2) functions return NULL, consistent with SQL standards.

select acos(2);
NULL

CAST function results
When casting a decimal value which has only zeros in the fractional digits, the CAST function in CDP differs from
CDH.

Before Upgrade to CDP

In CDH, fractional digits appear in the output of a cast of a decimal value that has only zeros in the fractional part.

For example, run this query that implicitly casts a number having insignificant decimal thousandths:

 SELECT 123.000

The output is a 0 tenths decimal: 123.0.

Explicit casts produce similar incorrect results.

select cast(123.000 as varchar(10)) ;

The output is a 0 tenths decimal: 123.0.

Hive behavior is the same when selecting data from a table.

After Upgrade to CDP

In CDP, fractional decimal digits are dropped in the output of a cast of a decimal value that has only zeros in the
fractional part (HIVE-15335).

 SELECT 123.000;

The output is the whole number: 123.

Hive behavior is the same when you explicitly cast columns and select data from a table.

34

https://issues.apache.org/jira/browse/HIVE-13423
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_create_udf_class.html
https://issues.apache.org/jira/browse/HIVE-17240
https://issues.apache.org/jira/browse/HIVE-15335

CDP Private Cloud Migrating Hive workloads from CDH

Action Required

To get the legacy CDH behavior in CDP, cast as follows:

select cast(’123.000’ as string) ;

Casting types with leading or trailing spaces
Learn about the fix to resolve inconsistent CAST behavior while casting string to numeric data types that have
leading or trailing whitespace characters.

Before upgrade to CDP

The CAST function resulted in incorrect results while casting string values with leading or trailing spaces to numeric
data types. For example,

select cast(' 1 ' as tinyint), cast(' 1 ' as smallint), cast(' 1 ' as int),
cast(' 1 ' as bigint), cast(' 1 ' as float), cast(' 1 ' as double), cast(' 1
 ' as decimal(10,2))

Output:

NULL NULL NULL NULL 1.0 1.0 1

The numeric data types, such as tinyint, smallint, int, and bigint were not converted correctly because of leading and
trailing spaces and returned NULL. However, float, double, and decimal returned the correct output.

After upgrade to CDP

HIVE-17782 provides the fix to ensure consistent cast behavior across data types. The fix trims leading or trailing
spaces in the string value before passing the value to the number formatter.

CORR and COVAR_SAMP compliant with SQL:2011
Learn about the changes introduced to ensure that the CORR and COVAR_SAMP built-in aggregate functions
(UDAFs) are in compliance with the SQL:2011 standards.

Before upgrade to CDP

The CORR and COVAR_SAMP aggregate functions were not in compliance with SQL:2011 standards. CORR
returned 'NaN' for N*SUM(x*x) = SUM(x)*SUM(x) and N*SUM(y*y) = SUM(y)*SUM(y). However, the function
is expected to return NULL per the standards.

Similarly, COVAR_SAMP returns '0' when the function is applied to a set with a single element. The function is
expected to return NULL.

After upgrade to CDP

HIVE-16178 fixes the compliance issues and ensures that these functions comply with SQL:2011 standards.

LENGTH function supported data types
The data types supported by the LENGTH function in CDP differ from CDH. The behavioral difference presents a
problem when using the absolute value function ABS.

Before Upgrade to CDP

In CDH, the LENGTH function supports double in addition to string, char, varchar or binary. For example, the
following query is valid:

select length(abs('123.000'));

After Upgrade to CDP

35

https://issues.apache.org/jira/browse/HIVE-17782
https://issues.apache.org/jira/browse/HIVE-16178

CDP Private Cloud Migrating Hive workloads from CDH

In CDP, HIVE-15979 is implemented to follow the SQL standard. LENGTH supports columns of data type string,
char, varchar or binary. Double is not supported by length() in CDP. For example, an error occurs when passing a
double to the abs function.

select length(abs('123.000'));

Error: Error while compiling statement: FAILED: SemanticException [Error 10
014]: Line 1:7 Wrong arguments ''123.000'': LENGTH() only takes STRING/CHAR
/VARCHAR/BINARY types as first argument ...42000

For more information, see the Generic UDF Length definition.

Action Required

In CDP, use the workaround shown in the following example:

select length(cast(abs('123.000') as char(10)));

STDDEV_SAMP and VAR_SAMP
Learn about the changes introduced to ensure that the STDDEV_SAMP and VAR_SAMP built-in aggregate
functions (UDAFs) are in compliance with the SQL:2011 standards.

Before upgrade to CDP

The STDDEV_SAMP and VAR_SAMP aggregate functions were not in compliance with SQL:2011 standards and
returns '0' when the function is applied to a set with a single element. The functions are expected to return NULL.

After upgrade to CDP

HIVE-17375 fixes the issue and ensures that these functions comply with SQL:2011 standards. The functions now
return NULL when they are applied to either an empty set or a set with a single element.

NULL related behaviors
Several behavior changes are due to the handling of NULLs.

ORDER BY clause treatment of NULLs
The default value of hive.default.nulls.last in CDP differs from the default value in CDH, which causes a behavioral
difference in the ORDER BY clause, including ORDER BY within a RANK function.

Before Upgrade to CDP

In CDH, hive.default.nulls.last is false. In ascending (ASC) order, NULL appears first. In descending (DESC) order,
NULL appears last.

After Upgrade to CDP

In CDP, hive.default.nulls.last is true. In ascending (ASC) order, NULL appears last. In descending (DESC) order,
NULL appears first (HIVE-23706),

Action Required

In CDP, set hive.default.nulls.last to false for legacy behavior. For more information, see Hive default null sorting
order for DESC is NULL FIRST.

Disallow enabling/enforcing NOT NULL
Hive does not manage the data for external tables and cannot enforce constraints on these tables.

Before Upgrade to CDP

You could enable/enforce a NOT NULL constraint on an external table. For example:

CREATE EXTERNAL TABLE t(a TINYINT, b SMALLINT NOT NULL ENABLE, c INT);

After Upgrade to CDP

36

https://issues.apache.org/jira/browse/HIVE-15979
https://github.com/apache/hive/blob/24092d1ae3279499c236b0f156cbb707c12f1e12/ql/src/java/org/apache/hadoop/hive/ql/udf/generic/GenericUDFLength.java#L63-L83
https://issues.apache.org/jira/browse/HIVE-17375
https://issues.apache.org/jira/browse/HIVE-23706
https://my.cloudera.com/knowledge/Hive-default-null-sorting-order-for-DESC-is-NULL-FIRST-which?id=361627
https://my.cloudera.com/knowledge/Hive-default-null-sorting-order-for-DESC-is-NULL-FIRST-which?id=361627

CDP Private Cloud Migrating Hive workloads from CDH

Enabling or enforcing a NOT NULL constraint on an external table causes an error (HIVE-18598).

Action Required

Prevent errors by removing the NOT NULL constraint in CREATE TABLE or ALTER TABLE statements.

Default NULL ordering change
The default NULL ordering changed from CDH to Cloudera. A workaround can prevent a possible performance hit.

Before Upgrade to CDP

In CDH, HIVE-20423 set NULLS LAST to be default ordering.

After Upgrade to CDP

In CDP, NULLS FIRST is the default ordering.

Action Required

To prevent the change from affecting your workload performance, such as TopNKey operations, follow instructions
in the Knowledge Base to set NULLS LAST as the default.

Enforcement of NOT NULL constraint

Before Upgrade to CDP

Hive did not support the enforcement of NOT NULL.

After Upgrade to CDP

HIVE-16605 supports NOT NULL constraint enforcement on INSERT, MERGE, and UPDATE statements. This
capability is configurable by setting the hive.constraint.notnull.enforce property. For more information, see Using
constraints.

Timestamp or date related behaviors
A few behavior changes are related to timestamp and date formats, functions, and data types.
ADD_MONTHS function fix
The output of the ADD_MONTHS function on a timestamp column was corrected to include the time.

Before Upgrade to CDP

The output of the following query incorrectly omitted the time:

select CUSTOMER_ID,EMAIL_FAILURE_DTMZ,ADD_MONTHS (EMAIL_FAILURE_DTMZ , 1) fr
om TABLE1 where CUSTOMER_ID=125674937;

Example output:

1125674937 2015-12-09 12:25:53 2016-01-09

After Upgrade to CDP

Hive-19370 fixed the omission, so the output of the query above includes the time.

Example output:

125674937 2023-12-09 12:25:53 2024-01-09 12:25:53

ADD_MONTHS date validation
A change, which is not likely to cause any migration problems, was made to the ADD_MONTHS function.

Before Upgrade to CDP

The ADD_MONTHS function would execute on invalid dates, such as 2017-02-29.

After Upgrade to CDP

37

https://issues.apache.org/jira/browse/HIVE-18598
https://issues.apache.org/jira/browse/HIVE-20423
https://my.cloudera.com/knowledge/Hive-default-null-sorting-order-for-DESC-is-NULL-FIRST-which?id=361627
https://issues.apache.org/jira/browse/HIVE-16605
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_constraints.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_constraints.html
https://issues.apache.org/jira/browse/HIVE-19370

CDP Private Cloud Migrating Hive workloads from CDH

Hive-18746 performs validation of the date before executing the ADD_MONTHS function. The output indicates an
invalid date as shown below:

select add_months('2017-02-29', 1);
'2017-02-29' is an invalid date.

Casting invalid dates
Casting of an invalid date differs from Hive 1 in CDH 5 to Hive 3 in CDP. Hive 3 uses a different parser formatter
from the one used in Hive 1, which affects semantics. Hive 1 considers 00 invalid for date fields. Hive 3 considers 00
valid for date fields. Neither Hive 1 nor Hive 3 correctly handles invalid dates, and Hive-25056 addresses this issue.

Before Upgrade to CDP

Casting of invalid date (zero value in one or more of the 3 fields of date, month, year) returns a NULL value:

SELECT CAST ('0000-00-00' as date) , CAST ('000-00-00 00:00:00' AS TIMESTAMP
) ;

After Upgrade to CDP

Casting of an invalid date returns a result.

> SELECT CAST ('0000-00-00' as date) , CAST ('000-00-00 00:00:00' AS TIMESTA
MP) ;
...
00002-11-30 00:00:00.0

Action Required

Do not cast invalid dates in Hive 3.

FROM_UNIXTIME and UNIX_TIMESTAMP time zone
The FROM_UNIXTIME and UNIX_TIMESTAMP functions have undergone more than one time zone change.

Before Upgrade to CDP

The functions supported the system time zone.

After Upgrade to CDP

The functions now support the user session time zone (HIVE-22170).

Handling of CURRENT_TIMESTAMP output format
The output format of the CURRENT_TIMESTAMP user defined function (UDF) is inconsistent in certain scenarios.

Before upgrade to CDP

CURRENT_TIMESTAMP returns the result in different output formats. For example,

select current_timestamp();
2016-04-14 18:26:58.875
select current_timestamp() from all100k union select current_timestamp() fr
om over100k limit 5;
2016-04-14 18:29:56

In the second query, the fractional seconds precision is removed from the output.

After upgrade to CDP

HIVE-13837 fixes this issue and the output format for CURRENT_TIMESTAMP YYYY-MM-DD HH:MM:SS.fff.

Handling of Julian dates in UDFs
The way Julian dates are handled in CDP is improved over the way CDH handled these dates.

Before Upgrade to CDP

38

https://issues.apache.org/jira/browse/HIVE-18746
https://issues.apache.org/jira/browse/HIVE-22170
https://issues.apache.org/jira/browse/HIVE-13837

CDP Private Cloud Migrating Hive workloads from CDH

Julian calendar (before Oct 15, 1582) dates are handled improperly by date/timestamp UDFs.

For example, the DateFormat UDF behavior is as follows:

Dates in the Julian calendar in your input are misinterpreted as Gregorian calendar dates. A multiple-day error can
occur. For example:

beeline> select date_format('1001-01-05','dd---MM--yyyy');
+----------------+
| _c0 |
+----------------+
| 30---12--1000 |
+----------------+

Problems have been reported in the following UDFs:

• add_months
• date_format
• day
• month
• months_between
• weekofyear
• year

After Upgrade to CDP

In CDP, Hive uses a proleptic Gregorian calendar used in SQL standard to handle Julian dates (Hive-22099).

Handling return type for old date functions
Learn about the changes related to the return type for some of the originally introduced date functions. The return
type is changed from string to date.

Before upgrade to CDP

Some of the original date functions, such as TO_DATE, DATE_ADD, and DATE_SUB returned string values
instead of date values. This was because the date return type was not available in Hive when these functions were
introduced.

After upgrade to CDP

HIVE-13248 changes the return type of to_date, date_add, and date_sub functions from string to date.

Support for SQL:2016 datetime formats (limited formats)
This change introduces support for the SQL:2016 FORMAT clause for CAST which is the most widely used method
to perform string to datetime conversions. The change also includes support for a limited list of SQL:2016 datetime
formats.

Before upgrade to CDP

Timestamp/date handling and formatting is currently implemented in Hive using the Java SimpleDateFormat patterns,
however, this is not what most standard SQL systems use. For example see Oracle and PostgreSQL.

After upgrade to CDP

CDP includes support for datetime format patterns as recommended by the ISO and ANSI SQL:2016 standard
for SQL database query language. SQL:2016 also includes the FORMAT clause for CAST function, which is the
preferred way to perform string to datetime conversions.
Usage

CAST(<datetime> AS <char string type> [FORMAT <template>])
CAST(<char string> AS <datetime type> [FORMAT <template>])

39

https://issues.apache.org/jira/browse/HIVE-22099
https://issues.apache.org/jira/browse/HIVE-13248
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/database/121/SQLRF/sql_elements004.htm#SQLRF00212
https://www.postgresql.org/docs/9.5/static/functions-formatting.html#FUNCTIONS-FORMATTING-DATETIME-TABLE

CDP Private Cloud Migrating Hive workloads from CDH

Examples

cast(dt as string format 'DD-MM-YYYY')
cast('01-05-2017' as date format 'DD-MM-YYYY')

For more information about these patterns, see CAST...FORMAT with SQL:2016 datetime formats.

For more information about the change, see HIVE-21576.

Action required

None. There is no configuration or feature flag introduced by this change to start using the new SQL standard
formats. Legacy functions, such as TO_TIMESTAMP and FROM_TIMESTAMP will continue to follow the
SimpleDateFormat patterns and CAST (...FORMAT...) will use the SQL:2016 patterns.

UNIX_TIMESTAMP behavior
The behavior of the UNIX_TIMESTAMP function in CDP differ in several ways from CDH.

Before Upgrade to CDP

• In CDH, you can use lowercase hh to represent hours of a timestamp in the format specification.
• You do not have to include microseconds in the format specification. The format MM-dd-yyyy HH:mm:ss is

sufficient.
• Casting a unix timestamp as a string works.

Example of using hh, which works:

select unix_timestamp('2024-12-30 59:10:20', "yyyy-MM-dd hh:mm:ss"), from_ut
c_timestamp(from_unixtime(unix_timestamp('2024-12-30 59:10:20', "yyyy-MM-dd
hh:mm:ss"),'yyyy-MM-dd HH:mm:ss'), 'CST'), from_utc_timestamp(from_unixtime(
unix_timestamp('2024-12-30 T59:10:20.192+0000', "yyyy-MM-dd'T'hh:mm:ss.SSS'+
0000'"),'yyyy-MM-dd HH:mm:ss'), 'CST') ;

Example of missing microseconds, which works.

select unix_timestamp('12-12-2023 15:30:12.075','MM-dd-yyyy HH:mm:ss');

Example of casting timestamp as a string, which works:

select cast(unix_timestamp('2023-04-03:10:10:00', 'yyyyMM') as string);

After Upgrade to CDP

• Hive in CDP requires uppercase HH and microseconds SSS are required in the format specification. For example,
'MM-dd-yyyy HH:mm:ss.SSS'; otherwise, output is NULL.

• Casting a timestamp yields NULL.

Example of using hh

Action Required

Change code from hh to HH and define microseconds.

select unix_timestamp('11-11-2020 15:30:12.084','MM-dd-yyyy HH:mm:ss.SSS');

For more information about timestamp issues, see HIVE-25458 and CDP release notes.

TIMESTAMP based on UTC
The Hive TIMESTAMP in CDH was not UTC-based. CDP supports UTC-based, SQL TIMESTAMP.

Greenwich Mean Time (GMT), also known as Coordinated Universal Time, Universal Time Coordinated (UTC), Z
time, or Zulu time is a coordinated time scale managed by the Bureau International des Poids et Mesures (BIPM).

40

https://cwiki.apache.org/confluence/display/Hive/CAST...FORMAT+with+SQL%3A2016+datetime+formats
https://issues.apache.org/jira/browse/HIVE-21576
https://issues.apache.org/jira/browse/HIVE-25458
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/runtime-release-notes/topics/rt-pvc-whats-new-hive.html#pnavId2

CDP Private Cloud Migrating Hive workloads from CDH

Before Upgrade to CDP

Hive used the local time (java.sql.Timestamp) to represent the TIMESTAMP data type without a time zone. This
behavior misrepresented the time in some zones.

After Upgrade to CDP

UTC is used instead of the local time to represent the TIMESTAMP data type without a time zone (HIVE-12192).

UNIX_TIMESTAMP conversion of TIMESTAMPLOCALTZ
CDP corrects an issue in CDH related to the UNIX_TIMESTAMP conversion of a local time zone.

Before Upgrade to CDP

Attempting to convert a timestamp of data type TIMESTAMPLOCALTZ using UNIX_TIMESTAMP, as shown in
the following example causes an exception.

set hive.local.time.zone=Asia/Bangkok;

SELECT FROM_UNIXTIME(UNIX_TIMESTAMP('2000-01-07 00:00:00 GMT','yyyy-MM-dd HH
:mm:ss z'));

The error looks something like this:

org.apache.hadoop.hive.ql.parse.SemanticException: Line 3:456 Wrong argument
s ''yyyy-MM-dd HH:mm:ss'': The function UNIX_TIMESTAMP takes only string/dat
e/timestamp types

After Upgrade to CDP

HIVE-18595 fixed the issue described above.

Action Required

Before upgrading from CDH to CDP, remove any conversions of the local time zone timestamp using
UNIX_TIMESTAMP.

Semantic changes and workarounds CDP 7.1.1
Review the semantic changes in Hive after migrating to CDP 7.1.1 from CDP 7.0.3.2. A link to Apache Hive JIRAs,
if there is one, provides more information about the semantic change. If you are migrating to CDP 7.1.1 from CDH
6.2.1, review the list of Hive changes in each CDP release prior to CDP 7.1.1.

NVL UDF implementation changes
The NVL user defined function (UDF) is used to replace a NULL value with any value other than NULL. The
implementation of the NVL function is the same as the implementation of the COALESCE function and therefore is
retired.

Before upgrade to 7.1.1

Prior to this change, the NVL and COALESCE function were both used for the same purpose - to replace a NULL
value with a non-NULL value. Both the functions were compiled separately.

After upgrade to 7.1.1

With this change, the NVL function is compiled to COALESCE, which is reflected in the execution plan generated
using the EXPLAIN command. The optimizations that are performed on the COALESCE function are also performed
on the NVL calls.

For more information, see HIVE-20961.

Improved Handling of External Table Inserts in HDFS
This change fixes an issue where emty file gets created when INSERT OVERWRITE is executed.

Before upgrade to CDP 7.1.1

41

https://issues.apache.org/jira/browse/HIVE-12192
https://issues.apache.org/jira/browse/HIVE-18595
https://issues.apache.org/jira/browse/HIVE-20961

CDP Private Cloud Migrating Hive workloads from CDH

When creating an EXTERNAL table and executing INSERT OVERWRITE, an empty file gets created in the HDFS
storage location.

After upgrade to CDP 7.1.1

Starting with CDP Private Cloud Base 7.1.1, no empty files are created in the HDFS location when executing
INSERT OVERWRITE on an external table because of a fix included in HIVE-22941.

This improvement, enhances Hive's performance, benefits other systems, and avoids the generation of small files in
HDFS.

Semantic changes and workarounds CDP 7.1.4
Review the semantic changes in Hive after migrating to CDP 7.1.4 from CDP 7.1.3. A link to Apache Hive JIRAs,
if there is one, provides more information about the semantic change. If you are migrating to CDP 7.1.4 from CDH
6.2.1, review the list of Hive changes in each CDP release prior to CDP 7.1.4.

Exclusive write lock for MERGE INSERT
Learn how you can enable EXCLUSIVE (X) lock for the MERGE INSERT operations, which helps in preventing
duplicates during concurrent MERGE INSERT operations.

Before upgrade to CDP 7.1.4

MERGE INSERT operation is treated as regular INSERT and acquires a SHARED_READ lock, which does not
prevent other INSERT operations. Two concurrent MERGE INSERT operations generate duplicates due to the lack
of locking.

After upgrade to CDP 7.1.4

A new configuration, hive.txn.xlock.mergeinsert is introduced to ensure that MERGE INSERT operations acquire
EXCLUSIVE or EXCL_WRITE lock for transactional tables.

When this property is set to 'true', it prevents duplicates when MERGE INSERT statements are running in parallel
transactions. By default, the property is set to 'false'.

If hive.txn.xlock.write=false (optimistic concurrency control), EXCL_WRITE is acquired by MERGE INSERT
and SHARED_WRITE is acquired by INSERT, else the operations acquire EXCLUSIVE and SHARED_READ
respectively. Both of these combinations prevent concurrent execution.

Action required

Ensure that you enable hive.txn.xlock.mergeinsert if you want to provide EXCLUSIVE lock for the MERGE
INSERT operation.

For more information, see HIVE-24000.

Lock implementations to allow zero-wait readers
Learn about the implementation changes introduced in locks to allow zero-wait or no-wait readers. You can enable
certain properties to ensure that SHARED_READ does not have to wait for any lock and can fail immediately for a
pending EXCLUSIVE DDL operation.

Before upgrade to CDP 7.1.4

By default, the implementation changes as part of this fix are disabled and read operations have to wait to acquire a
lock.

After upgrade to CDP 7.1.4

This change introduces a new EXCL_WRITE lock type that improves concurrency of transactions by moving some
of the operations to another operation like INSERT OVERWRITE that has a less restrictive lock.

This ensures that regular INSERT INTO operations (with a SHARED_WRITE locktype) that are running
concurrently are not hidden by the INSERT OVERWRITE operation (with a EXCL_WRITE locktype).

42

https://issues.apache.org/jira/browse/HIVE-22941
https://issues.apache.org/jira/browse/HIVE-24000

CDP Private Cloud Migrating Hive workloads from CDH

The new implementation is auto-enabled when either the hive.txn.xlock.write or hive.txn.xlock.iow properties are set
to 'false'. This ensures that read operations fail immediately if there is a DDL operation like DROP with EXCLUSIVE
lock type.

Action required

Enable the new implementation by setting either hive.txn.xlock.write or hive.txn.xlock.iow to 'false'.

For more information, see HIVE-19369.

UNBOUNDED representation in Window functions
Learn about the implementation change for the ROWS clause of the Window function. The boundary specification
has now been updated to consider the UNBOUNDED representation.

Before upgrade to CDP 7.1.4

The implementation of the ROWS clause in Window functions previously considered a bounded representation with
the limits set to Integer.MAX_VALUE (2147483647).

After upgrade to CDP 7.1.4

The bounded representation was changed to use UNBOUNDED to align with the RexWindowBound boundary class
of the Apache Calcite SQL parser.

For more information, see HIVE-23275.

Support for 0 ROWS PRECEDING or FOLLOWING
Learn about the change that provides support for 0 ROWS PRECEDING or ROWS FOLLOWING in Window
function specifications.

Before upgrade to CDP 7.1.4

The support for '0' as a Window frame boundary in ROWS PRECEDING or ROWS FOLLOWING was removed as
part HIVE-12574.

After upgrade to CDP 7.1.4

The Window function specification is enhanced to support a Window frame boundary value of '0' for ROWS
PRECEDING and ROWS FOLLOWING, and replaces it with CURRENT ROW in the query plan. The behavior is
the same as using 0 ROWS PRECEDING/FOLLOWING.

For more information, see HIVE-23868.

Semantic changes and workarounds CDP 7.1.5
Review the semantic changes in Hive after migrating to CDP 7.1.5 from CDP 7.1.4. A link to Apache Hive JIRAs,
if there is one, provides more information about the semantic change. If you are migrating to CDP 7.1.5 from CDH
6.2.1, review the list of Hive changes in each CDP release prior to CDP 7.1.5.

Sort behavior in SHOW COLUMNS
Learn about the change in sorting behavior when you run the SHOW COLUMNS statement. The resulting output is
not sorted unless explicitly specified.

Before upgrade to CDP 7.1.5

Previously, the default behavior of the SHOW COLUMNS statement displayed the output in a sorted manner.

Example:

CREATE TABLE foo (c INT, a INT, b INT);
SHOW COLUMNS in foo;

Output:
a
b
c

43

https://issues.apache.org/jira/browse/HIVE-19369
https://issues.apache.org/jira/browse/HIVE-23275
https://issues.apache.org/jira/browse/HIVE-12574
https://issues.apache.org/jira/browse/HIVE-23868

CDP Private Cloud Migrating Hive workloads from CDH

Expected output:
c
a
b

After upgrade to CDP 7.1.5

The default behavior of the SHOW COLUMNS statement was changed to display the columns as is without sorting.
If you want the output to be sorted, you must provide the optional keyword 'SORTED'.

Example: For the table created in the above example, here is the modified SHOW COLUMNS behavior:

SHOW COLUMNS in foo;

Output:
c
a
b
SHOW SORTED COLUMNS in foo;

Output:
a
b
c

For more information, see HIVE-24282.

Event notification cleanup interval
A new configuration is introduced to specify the Time-to-live (TTL) for event notifications based on whether
replication is enabled. The TTL determines how long the events can remain in the Hive Metastore (HMS).

Before upgrade to CDP 7.1.5

The hive.metastore.event.db.listener.timetolive property was used to determine how long events are stored in the
HMS after which the events are removed from the database listener queue. The default value for this property is set to
1 day. However, this does not take replication into context in order to have a longer duration.

After upgrade to CDP 7.1.5

A new property, hive.repl.event.db.listener.timetolive is introduced to determine how long events are stored in the
HMS based on whether replication (hive.repl.cm.enabled) is enabled or not. The default value of this property is set to
10 days.

When hive.repl.cm.enabled is set to true, the TTL is determined by the value specified in hive.repl.event.db.listener.
timetolive. Else, if the value is set to false, the TTL reverts to the earlier behavior and is determined by the value
specified in hive.metastore.event.db.listener.timetolive.

For more information, see HIVE-24173.

Action required

If replication is enabled (hive.repl.cm.enabled=true), then ensure that the hive.repl.event.db.listener.timetolive
property is set to the required time for which you want event notifications to be stored in the HMS.

Semantic changes and workarounds CDP 7.1.6
Review the semantic changes in Hive after migrating to CDP 7.1.6 from CDP 7.1.5. A link to Apache Hive JIRAs,
if there is one, provides more information about the semantic change. If you are migrating to CDP 7.1.6 from CDH
6.2.1, review the list of Hive changes in each CDP release prior to CDP 7.1.6.

Support for SQL:2016 datetime formats (text, FM, FX)
This change enables Hive to parse the SQL:2016 datetime formats (text, FM, and FX) when a combination or subset
of these formats or any of the previously implemented formats are provided in a string.

44

https://issues.apache.org/jira/browse/HIVE-24282
https://issues.apache.org/jira/browse/HIVE-24173

CDP Private Cloud Migrating Hive workloads from CDH

Before upgrade to CDP

Support was available for a limited set of SQL:2016 datetime formats introduced as part of HIVE-21576.

After upgrade to CDP

CDP 7.1.6 includes support for additional datetime format patterns as recommended by the ISO and ANSI SQL:2016
standard for SQL database query language. The list of datetime formats added as part of this change are as follows:

• Nested strings (Text)
• Fill mode modifier (FM)
• Format exact modifier (FX)

For more information about these patterns, see CAST...FORMAT with SQL:2016 datetime formats.

For more information about the change, see HIVE-21578.

Action required

None. There is no configuration or feature flag introduced by this change to start using the new SQL standard
formats. Legacy functions, such as to_timestamp() and from_timestamp() will continue to follow the
SimpleDateFormat patterns and CAST (...FORMAT...) will use the SQL:2016 patterns.

Casting Timestamp to numeric and vice-versa
Casting a Timestamp to a numeric, or a numeric to a Timestamp, is not allowed by default and not supported by the
SQL Standard.

Before Upgrade to CDP 7.1.6

In CDP 7.1.5 and earlier, casting to/from Timestamp/numeric was allowed.

After Upgrade to CDP 7.1.6

In CDP 7.1.6, casting to/from Timestamp/numeric is not allowed by default. A new hive.strict.timestamp.conversion
property was introduced and set to true by default.

select cast(123 as timestamp);

Output is:

FAILED: SemanticException Line 0:-1 Wrong arguments '123': Casting NUMERIC t
ypes to TIMESTAMP is prohibited (hive.strict.timestamp.conversion)

For more information, see HIVE-24157.

Action Required

To use the legacy behavior that allows casting a Timestamp to numeric and vice-versa, set hive.strict.timestamp.co
nversion to false.

Handling trailing zeros of decimal constants
Learn about the change that ensures that decimal constants are padded with trailing zeros according to the specified
scale.

Before upgrade to CDP 7.1.6

Hive removes trailing zeros of decimal constants in some cases. Padding decimal values with trailing zeros is not
consistent. For example,

select cast(cast(1.1 as decimal(22, 2)) as string), cast(cast(sum(1.1) as de
cimal(22, 2)) as string)

Output:
1.1 1.10

45

https://issues.apache.org/jira/browse/HIVE-21576
https://cwiki.apache.org/confluence/display/Hive/CAST...FORMAT+with+SQL%3A2016+datetime+formats
https://issues.apache.org/jira/browse/HIVE-21578
https://issues.apache.org/jira/browse/HIVE-24157

CDP Private Cloud Migrating Hive workloads from CDH

After upgrade to CDP 7.1.6

HIVE-24389 provides the fix that pads constant decimal values with trailing zeros up to the specified scale.

Semantic changes and workarounds CDP 7.1.7
Review the semantic changes in Hive after migrating to CDP 7.1.7 from CDP 7.1.6. A link to Apache Hive JIRAs,
if there is one, provides more information about the semantic change. If you are migrating to CDP 7.1.7 from CDH
6.2.1, review the list of Hive changes in each CDP release prior to CDP 7.1.7.

Precision and scale changes
Learn about the change in behavior of precision and scale in arithmetic operations.

Before Upgrade to CDP 7.1.6

In CDP Private Cloud Base 7.1.5 and lower versions, the default maximum precision and scale for arithmetic
operations was calculated differently. For example, the following expression returns a result of 1523746134454743
7170.339101086652 with decimal(34, 12):

select cast('12346789101112123.12345678' as decimal(25,8)) * cast('1234.123
4' as decimal(25,8))

After Upgrade to CDP 7.1.6

In CDP Private Cloud Base 7.1.6 and higher versions, the default maximum precision and scale for arithmetic
operations follow the specifications defined in Microsoft SQL Server documentation.

As a result, the above expression returns a result of 15237461344547437170.339101 with decimal(38, 6).

For more information, see HIVE-24389, HIVE-25263, and HIVE-15331.

Semantic changes and workarounds CDP 7.1.7 SP1
Review the semantic changes in Hive after migrating to CDP 7.1.7 SP1 from CDP 7.1.7. A link to Apache Hive
JIRAs, if there is one, provides more information about the semantic change. If you are migrating to CDP 7.1.7 SP1
from CDH 6.2.1, review the list of Hive changes in each CDP release prior to CDP 7.1.7 SP1.

Date and timestamp parser changes from LENIENT to STRICT
Learn about the changes introduced in DateTimeFormatter class, which is used to parse string, int, and char into Date
or Timestamp.

Before Upgrade to CDP 7.1.7 SP1

Before the upgrade, the DateTimeFormatter class was set to ResolverStyle.LENIENT, which results in converting an
incorrect date or timestamp instead of NULL. For example, "1992-13-12" was converted to "2000-01-12".

After Upgrade to CDP 7.1.7 SP2

The DateTimeFormatter class was enhanced to use the ResolverStyle.STRICT, which returns NULL when an
incorrect date or timestamp is casted.

For more information, see HIVE-25306.

Date strings are parsed using local timezone
Certain UDFs, such as datefiff() that use the VectorUDFDateDiffColScalar class, return an incorrect result when
parsing scalar dates. Learn about the changes introduced to fix this issue.

Before Upgrade to CDP 7.1.7 SP1

The VectorUDFDateDiffColScalar class uses java.text.SimpleDateFormat to parse the date strings and interpret the
scalar date to be in the local timezone.

Example:

create external table test_dt(id string, dt date);

46

https://issues.apache.org/jira/browse/HIVE-24389
https://learn.microsoft.com/en-us/sql/t-sql/data-types/precision-scale-and-length-transact-sql?view=sql-server-ver16
https://issues.apache.org/jira/browse/HIVE-24389
https://issues.apache.org/jira/browse/HIVE-25263
https://issues.apache.org/jira/browse/HIVE-15331
https://issues.apache.org/jira/browse/HIVE-25306

CDP Private Cloud Migrating Hive workloads from CDH

insert into test_dt values('11', '2021-07-06'), ('22', '2021-07-07');

select datediff(dt1.dt, '2021-07-01') from test_dt dt1 left join test_dt dt
 on dt1.id = dt.id;

Output:
+------+
| _c0 |
+------+
| 6 |
| 7 |
+------+

Expected output:
+------+
| _c0 |
+------+
| 5 |
| 6 |
+------+

After Upgrade to CDP 7.1.7 SP1

The parsing mechanism of the VectorUDFDateDiffColScalar class is updated to interpret date strings in Coordinated
Universal Time (UTC) and the UDFs now return correct values.

For more information, see HIVE-25449.

Semantic changes and workarounds CDP 7.1.7 SP2
Review the semantic changes in Hive after migrating to CDP 7.1.7 SP2 from CDP 7.1.7 SP1. A link to Apache Hive
JIRAs, if there is one, provides more information about the semantic change. If you are migrating to CDP 7.1.7 SP2
from CDH 6.2.1, review the list of Hive changes in each CDP release prior to CDP 7.1.7 SP2.

Date and timestamp format changes
Learn about the change in the way date and timestamp values are parsed.

Before Upgrade to CDP 7.1.7 SP2

Some of the Hive date and timestamp functions used the SimpleDateFormat class for formatting and parsing date and
timestamp. For more information, refer to the SimpleDateFormat class Javadocs.

After Upgrade to CDP 7.1.7 SP2

The following Hive date and timestamp functions are now enhanced to use the DateTimeFormatter class for printing
and parsing date and timestamp objects. For more information, refer to the DateTimeFormatter class Javadocs.

• unix_timestamp(): This function is enhanced to use the DateTimeFormatter class for String format dates instead of
the SimpleDateFormat class. For details, see HIVE-25458.

• from_unixtime(): This function is now enhanced to consider leap seconds. For details, see HIVE-25403.
• date_format(): This function that previously returned the output in UTC time zone is enhanced to display the

default user session time zone. For details, see HIVE-25093.
• cast(): This function is enhanced to display NULL when an incorrect date or timestamp is casted. Prior to this

enhancement, when an incorrect date was casted, the function returned a converted value. For example, cast
 ('2020-20-20' as date) resulted in '2021-08-20' instead of NULL.

This is because the DateTimeFormatter class that is used to parse string into date or timestamp was set to Resolver
Style.LENIENT. This is now updated to use ResolverStyle.STRICT and returns NULL when an invalid date or
timestamp is casted. For details, see HIVE-25306.

47

https://issues.apache.org/jira/browse/HIVE-25449
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://issues.apache.org/jira/browse/HIVE-25458
https://issues.apache.org/jira/browse/HIVE-25403
https://issues.apache.org/jira/browse/HIVE-25093
https://issues.apache.org/jira/browse/HIVE-25306

CDP Private Cloud Migrating Hive workloads from CDH

Important:

Two identical patterns can be interpreted differently by the SimpleDateFormat and DateTimeFormatter class
leading to different results. Even if the same letters appear in the javadoc of both the classes, their semantics
might be different. Therefore, it is important that you read the javadoc carefully to understand the behavior.

For example, consider the pattern "DD". In both SimpleDateFormat and DateTimeFormatter classes, the letter
"D" represents the day in a year. However, the number of occurrences is interpreted differently by the classes.

If the date - July 19, 2023 is formatted using SimpleDateFormat("D") , the output results in 231.

If the same date - July 19, 2023 is formatted using DateTimeFormatter("D"), the output results in the
following error:

Exception in thread "main" java.time.DateTimeException: Field DayOfY
ear cannot be printed as the value 200 exceeds the maximum print width
 of 2

For more details about the syntax and behavior of these UDFs, see Hive LanguageManual UDF.

Note: Starting from CDP Private Cloud Base 7.1.7 SP2 version Cumulative hotfix 14, a new configurable
hive.datetime.formatter property is introduced through HIVE-25576 that enables you to choose between Simp
leDateFormat and DateTimeFormatter for the unix_timestamp and from_unixtime SQL functions.

Semantic changes and workarounds CDP 7.1.7 SP2 CHFx
Review the semantic changes in Hive after migrating to CDP 7.1.7 SP2 CHFx from CDP 7.1.7 SP1. A link to Apache
Hive JIRAs, if there is one, provides more information about the semantic change. If you are migrating to CDP 7.1.7
SP2 CHFx from CDH 6.2.1, review the list of Hive changes in each CDP release prior to CDP 7.1.7 SP2 CHFx.

New property to control datetime formatter
Learn about the new property that is introduced that allows you to choose the datetime formatter class to be used for
formatting and parsing date and timestamp.

Before Upgrade to 7.1.7 SP2 Cumulative hotfix 14

The unix_timestamp and from_unixtime functions were previously enhanced to use the DateTimeFormatter class for
formatting and parsing date and timestamp instead of the SimpleDateFormat class.

After Upgrade to 7.1.7 SP2 Cumulative hotfix 14

HIVE-25576 introduces a configurable hive.datetime.formatter property that you can use to choose between Simp
leDateFormat and DateTimeFormatter for the unix_timestamp and from_unixtime SQL functions.

The two Java datetime formatters differ in their behavior, which leads to different query results. The supported
patterns between the two formatters are also different, which makes existing queries crash during runtime (after an
upgrade). Also, adapting to the new behavior of the DateTimeFormatter class can be challenging and time-consuming
for users considering that the unixtime functions are extensively used.

Although the DateTimeFormatter class is an improvement over SimpleDateFormat, some users may want to retain the
old behavior to ensure compatibility after migration, therefore, making it necessary for introducing this property.

The possible values for the hive.datetime.formatter property are 'DATETIME' and 'SIMPLE' representing DateTime
Formatter and SimpleDateFormat respectively. The default value is set to 'DATETIME'.

Action Required

Set the hive.datetime.formatter parameter to 'SIMPLE' if you want to use the SimpleDateFormat class. Add this
parameter in Cloudera Manager (Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml).

Dates are parsed by ignoring trailing invalid characters
Learn about the change in the way dates are parsed from a string by ignoring trailing invalid characters

Before upgrade to CDP 7.1.7 SP2 Cumulative hotfix 14

48

https://cwiki.apache.org/confluence/display/hive/languagemanual+udf
https://issues.apache.org/jira/browse/HIVE-25576
https://issues.apache.org/jira/browse/HIVE-25576

CDP Private Cloud Migrating Hive workloads from CDH

HIVE-20007 introduced changes in the way dates were parsed from strings. SQL functions or date operations
involving invalid dates returned "null".

After upgrade to CDP 7.1.7 SP2 Cumulative hotfix 14

HIVE-27586 extracts and returns a valid date from a string value if there is a valid date prefix in the string. This fix
partially restores the behavior changes introduced as part of HIVE-20007 and also makes the current behavior of
handling trailing invalid characters more consistent.

The following table illustrates the behavior changes before and after the fix:

String value Behavior (before
HIVE-20007)

Previous behavior (after
HIVE-20007)

Current behavior (after
HIVE-27586)

2023-08-03_16:02:00 2023-08-03 null 2023-08-03

2023-08-03-16:02:00 2023-08-03 null 2023-08-03

2023-08-0316:02:00 2024-06-11 null 2023-08-03

03-08-2023 0009-02-12 null 0003-08-20

2023-08-03 GARBAGE 2023-08-03 2023-08-03 2023-08-03

2023-08-03TGARBAGE 2023-08-03 2023-08-03 2023-08-03

2023-08-03_GARBAGE 2023-08-03 null 2023-08-03

This change affects various Hive SQL functions and operators that accept dates from string values, such as
CAST (V AS DATE), CAST (V AS TIMESTAMP), TO_DATE, DATE_ADD, DATE_DIFF, WEEKOFYEAR,
DAYOFWEEK, and TRUNC.

Semantic changes and workarounds CDP 7.1.8 CHFx
Review the semantic changes in Hive after migrating to CDP 7.1.8 CHFx from CDP 7.1.7 SP2. A link to Apache
Hive JIRAs, if there is one, provides more information about the semantic change. If you are migrating to CDP 7.1.8
CHFx from CDH 6.2.1, review the list of Hive changes in each CDP release prior to CDP 7.1.8 CHFx.

Handling table column named default
Learn about the change to ensure that Hive is able to reference a table column that is named as 'default'.

Before upgrade to CDP 7.1.8

Hive was unable to reference table columns that are named as 'default' and returns NULL. For example,

create table t1 (a int, `default` int) stored as orc TBLPROPERTIES ('transac
tional'='true');
insert into t1 values (1, 2), (10, 11);
update t1 set a = `default`;
select * from t1;
Output:
NULL NULL
NULL NULL

Expected output:
2 2
11 11

After upgrade to 7.1.8

HIVE-25969 fixes this issue and Hive is now able to reference table columns named 'default'.

Fix precision and scale inference for aggregate rewriting in Calcite
This change fixes an issue where type inference of intermediate precision and scale for division is not correct.

49

https://issues.apache.org/jira/browse/HIVE-20007
https://issues.apache.org/jira/browse/HIVE-27586
https://issues.apache.org/jira/browse/HIVE-25969

CDP Private Cloud Migrating Hive workloads from CDH

Before upgrade to CDP 7.1.8 CHF2

The AggregateReduceFunctionsRule class of Calcite rules reduce aggregate functions into simpler forms, for
example, avg(x) into sum(x)/count(x). When the type of avg(x) aggregate function is decimal, type inference of the
intermediate precision and scale for the division is not done correctly.

The reason is due to lack of support for some types in the getDefaultPrecision method in HiveTypeSystemImpl.

After upgrade to CDP 7.1.8 CHF2

HIVE-22978 provides the fix to correct the precision and scale type inference for aggregate rewriting in Calcite.
Additionally, the deriveSumType method in HiveTypeSystemImpl is overridden to abide by the Hive semantics for
sum aggregate type inference.

Migrating Spark Apps

Preventing SparkSQL incompatibility
You need to be aware of two SparkSQL incompatibilities and how to work around these problems. The upgrade
process converted all CDH Hive tables to external tables, however, if you moved managed, non-ACID tables
preventing conversion to external tables, these are not compatible with native SparkSQL. Also, you might encounter a
problem reading Hive 2 external ORC tables from Spark.
Related Information
Hive Warehouse Connector for accessing Apache Spark data

Hive-17275

SPARK-28098

Managed, non-ACID table problem

About this task
Consider using either one of the following options:

• Convert ACID tables to external tables after the Cloudera upgrade.
• Use the Hive Warehouse Connector.

Follow these steps to create a new external table using Hive 3 and migrate the data from the managed table to the new
table.

Procedure

1. Run the SHOW CREATE TABLE statement on the original table to get the full definition of the table.

SHOW CREATE TABLE <tablename>;

2. Rename the managed table to *_old.

3. Migrate data from *_old to <new> external table using the original name in the historical, or the default, location
(/warehouse/tablespace/external/hive/<?>.db/<tablename>).

CREATE EXTERNAL TABLE new_t AS SELECT * FROM old_t;

Reading a Hive external table in ORC from Spark

About this task
Unlike the Hive ORC reader, which supports recursive directory reads, the Spark native ORC reader does not
support recursive directory reads of Hive tables. Reading Hive 2.x tables is a problem under both of the following
circumstances:

50

https://issues.apache.org/jira/browse/HIVE-22978
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://issues.apache.org/jira/browse/HIVE-17275
https://issues.apache.org/jira/browse/SPARK-28098

CDP Private Cloud Migrating Hive workloads from CDH

• You created the table using Hive CTAS (create table as select).
• One of more selected tables included UNION ALL.

When creating a table under these circumstances, subdirectories are named /1 /2 /3. Subdirectories do not include the
HIVE_UNION_SUBDIR_ prefix as Hive 3-created tables do. You cannot read these tables from Spark if the tables
are in ORC format.

The following workaround configures Spark to overcome this problem.

Procedure

1. If you already started the Spark shell, quit the shell.

You cannot perform workaround configuration for the session if the session is already started.

2. Start the Spark shell with convertMetastoreOrc disabled.
For example:

spark-shell ...
--conf spark.sql.hive.convertMetastoreOrc=false

Spark integration with Hive
You need to know a little about Hive Warehouse Connector (HWC) and how to find more information because to
access Hive from Spark, you need to use HWC implicitly or explicitly.

You can use the Hive Warehouse Connector (HWC) to access Hive managed tables from Spark. HWC is specifically
designed to access managed ACID v2 Hive tables, and supports writing to tables in Parquet, ORC, Avro, or Textfile
formats. HWC is a Spark library/plugin that is launched with the Spark app.

You do not need HWC to read from or write to Hive external tables. Spark uses native Spark to access external tables.

Use the Spark Direct Reader and HWC for ETL jobs. For other jobs, consider using Apache Ranger and the
HiveWarehouseConnector library to provide row and column, fine-grained access to the data.

HWC supports spark-submit and pyspark. The spark thrift server is not supported.

Related Information
Hive Warehouse Connector for accessing Apache Spark data

Removing Hive on Spark Configurations
Your scripts, or queries, include the Hive on Spark configuration, which is no longer supported, and you must know
how to recognize and remove these configurations.

In Cloudera, there is no Hive-Spark dependency. The Spark site and libs are not in the classpath. This execution
engine has been replaced by Apache Tez.

Before Upgrade to Cloudera

CDH supported Hive on Spark and the following configuration to enable Hive on Spark: set hive.execution.engine=sp
ark

After Upgrade to Cloudera

Cloudera does not support Hive on Spark. Scripts that enable Hive on Spark do not work.

Action Required

Remove set hive.execution.engine=spark from your scripts.

Disabling Partition Type Checking
An enhancement in Hive 3 checks the types of partitions. This feature can be disabled by setting a property. For more
information, see the ASF Apache Hive Language Manual.

51

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html

CDP Private Cloud Migrating Hive workloads from CDH

Before Upgrade to Cloudera

In CDH 5.x, partition values are not type checked.

After Upgrade to Cloudera

Partition values specified in the partition specification are type checked, converted, and normalized to conform to
their column types if the property hive.typecheck.on.insert is set to true (default). The values can be numbers.

Action Required

If type checking of partitions causes problems, disable the feature. To disable partition type checking, set hive.typ
echeck.on.insert to false. For example:

SET hive.typecheck.on.insert=false;

Related Information
Apache Hive Wiki: Partitioned Tables

Hive Language Manual: Alter Partition

Converting Hive CLI scripts to Beeline
If you have legacy scripts that run Hive queries from edge nodes using the Hive CLI, you must solve potential
incompatibilities with variable substitution in these scripts. CDP supports Beeline instead of Hive CLI. You can use
Beeline to run legacy scripts with a few caveats.

About this task

In this task, you resolve incompatibilities in legacy Hive CLI scripts and Beeline:

• Configuration variables

• Problem: You cannot refer to configuration parameters in scripts using the hiveconf namespace unless
allowed.

• Solution: You include the parameter in the HiveServer allowlist (whitelist).
• Namespace problems

• Problem: Beeline does not support the system and env namespaces for variables.
• Solution: You remove these namespace references from scripts using a conversion technique described in this

task.

Procedure

1. Create a conversion script named env_to_hivevar.sh that removes env references in your SQL scripts.

#!/usr/bin/env bash

CMD_LINE=""

#Blank conversion of all env scoped values
for I in `env`; do
 CMD_LINE="$CMD_LINE --hivevar env:${I} "
done
echo ${CMD_LINE}

2. On the command line of a node in your cluster, define and export a variable named HIVEVAR, for example, and
set it to run the conversion script.

export HIVEVAR=`./env_to_hivevar.sh`

52

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-PartitionedTables
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-PartitionedTables

CDP Private Cloud Migrating Hive workloads from CDH

3. Define and export variables to hold a few variables for testing the conversion.

export LOC_TIME_ZONE="US/EASTERN"
export MY_TEST_VAR="TODAY"

4. On the command line of a cluster node, test the conversion: Execute a command that references HIVEVAR to
parse a SQL statement, remove the incompatible env namespace, and execute the remaining SQL.

hive ${HIVEVAR} -e 'select "${env:LOC_TIME_ZONE}";'

+-------------+
| _c0 |
+-------------+
| US/EASTERN |
+-------------+

5. Create a text file named init_var.sql to simulate a legacy script that sets two configuration parameters, one in the
problematic env namespace.

set mylocal.test.var=hello;
set mylocal.test.env.var=${env:MY_TEST_VAR};

6. Include these configuration parameters in the allowlist: In Cloudera Manager, go to Clusters HIVE_ON_TEZ-1
Configuration , and search for hive-site.

7. In HiveServer2 Advanced Configuration Snippet (Safety Valve) for hive-site.xml, add the property key: hive.sec
urity.authorization.sqlstd.confwhitelist.append.

8. Provide the property value, or values, to allowlist, for example: mylocal\..*|junk.

This action appends mylocal.test.var and mylocal.test.env.var parameters to the allowlist.

9. Save configuration changes, and restart any components as required.

10. Run a command that references HIVEVAR to parse a SQL script, removes the incompatible env namespace, and
runs the remaining SQL, including the whitelisted configuration parameters identified by hiveconf:.

hive -i init_var.sql ${HIVEVAR} -e 'select "${hiveconf:mylocal.test.var}
","${hiveconf:mylocal.test.env.var}";'

+--------+--------+
| _c0 | _c1 |
+--------+--------+
| hello | TODAY |
+--------+--------+

Hive unsupported interfaces and features
You need to understand the interfaces that are not supported.

Unsupported Interfaces and features

The following interfaces are not supported in Cloudera Base on premises:

• Druid
• Hcat CLI (however HCatalog is supported)
• Hive CLI (replaced by Beeline)
• Hive View UI feature in Ambari
• Apache Hive Standalone driver
• Renaming Hive databases

53

CDP Private Cloud Migrating Hive workloads from CDH

• Multiple insert overwrite queries that read data from a source table.
• LLAP
• MapReduce execution engine (replaced by Tez)
• Pig
• S3 for storing tables (available in Cloudera on cloud only)
• Spark execution engine (replaced by Tez)
• Spark thrift server

Spark and Hive tables interoperate using the Hive Warehouse Connector.
• SQL Standard Authorization
• Storage Based Authorization
• Tez View UI feature in Ambari
• WebHCat

You can use Hue in lieu of Hive View.

Storage Based Authorization

Storage Based Authorization (SBA) is no longer supported in Cloudera. Ranger integration with Hive metastore
provides consistency in Ranger authorization enabled in HiveServer (HS2). SBA did not provide authorization
support for metadata that does not have a file/directory associated with it. Ranger-based authorization has no such
limitation.

Hive-Kudu integration

Cloudera does not support the integration of HiveServer (HS2) with Kudu tables. You cannot run queries against
Kudu tables from HS2.

Partially unsupported interfaces

Apache Hadoop Distributed Copy (DistCP) is not supported for copying Hive ACID tables.

Unsupported Features

Cloudera does not support the following features that were available in HDP and CDH platforms:

• CREATE TABLE that specifies a managed table location

Do not use the LOCATION clause to create a managed table. Hive assigns a default location in the warehouse to
managed tables. That default location is configured in Hive using the hive.metastore.warehouse.dir configuration
property, but can be overridden for the database by setting the CREATE DATABASE MANAGEDLOCATION
parameter.

• CREATE INDEX and related index commands were removed in Hive 3, and consequently are not supported in
Cloudera.

In Cloudera, you use the Hive 3 default ORC columnar file formats to achieve the performance benefits of
indexing. Materialized Views with automatic query rewriting also improves performance. Indexes migrated to
Cloudera are preserved but render any Hive tables with an undroppable index. To drop the index, google the
Known Issue for CDPD-23041.

• Hive metastore (HMS) high availablility (HA) load balancing in CDH

You need to set up HMS HA as described in the documentation.

• Local or Embedded Hive metastore server

Cloudera does not support the use of a local or embedded Hive metastore setup.

54

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Unsupported Connector Use

Cloudera does not support the Sqoop exports using the Hadoop jar command (the Java API) that Teradata documents.
For more information, see Migrating data using Sqoop.

Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

You upgraded from HDP 2.6.5 to Cloudera Private Cloud Base. The upgrade moved the Hive data and schema to
Cloudera Private Cloud Base. As the Hive Administrator, you need to make Hive tables available to your users. You
need to configure your Hive-related services for CDP, and secure access to Hive data.

Assumptions

• You are familiar with Apache Hive 3.1 key features and supported interfaces.
• You acquired basic information about the CDP platform before you upgraded from HDP.

Related Information
Apache Hive 3 Key Features

Apache Hive 3 Architectural Overview

Changes to HDP Hive tables
As a Data Scientist, Architect, Analyst, or other Hive user you need to locate and use your Apache Hive 3 tables after
an upgrade. You also need to understand the changes that occur during the upgrade process.

Managed, ACID tables that are not owned by the hive user remain managed tables after the upgrade, but hive
becomes the owner.

After the upgrade, the format of a Hive table is the same as before the upgrade. For example, native or non-native
tables remain native or non-native, respectively.

After the upgrade, the location of managed tables or partitions do not change under any one of the following
conditions:

• The old table or partition directory was not in its default location /apps/hive/warehouse before the upgrade.
• The old table or partition is in a different file system than the new warehouse directory.
• The old table or partition directory is in a different encryption zone than the new warehouse directory.

Otherwise, the upgrade process from HDP to Cloudera Base on premises moves managed files to the Hive warehouse
/warehouse/tablespace/managed/hive. The upgrade process carries the external files over to Cloudera Base on
premises with no change in location. By default, Hive places any new external tables you create in /warehouse/table
space/external/hive. The upgrade process sets the hive.metastore.warehouse.dir property to this location, designating
it the Hive warehouse location.

Changes to table references using dot notation

Upgrading to Cloudera includes the Hive-16907 bug fix, which rejects `db.table` in SQL queries. The dot (.) is not
allowed in table names. To reference the database and table in a table name, both must be enclosed in backticks as
follows: `db`.`table`.

Changes to ACID properties

Hive 3.x in Cloudera Base on premises supports transactional and non-transactional tables. Transactional tables have
atomic, consistent, isolation, and durable (ACID) properties. In Hive 2.x, the initial version of ACID transaction

55

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/migrating-data-into-hive/topics/hive_data_migration.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive_whats_new_in_this_release_hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive-apache-hive-3-architectural-overview.html

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

processing was ACID v1. In Hive 3.x, the mature version of ACID is ACID v2, which is the default table type in
Cloudera Base on premises.

Native and non-native storage formats

Storage formats are a factor in upgrade changes to table types. Hive 2.x and 3.x support the following native and non-
native storage formats:

• Native: Tables with built-in support in Hive, such as those in the following file formats:

• Text
• Sequence File
• RC File
• AVRO File
• ORC File
• Parquet File

• Non-native: Tables that use a storage handler, such as the DruidStorageHandler or HBaseStorageHandler

Cloudera Base on premises upgrade changes to HDP table types

The following table compares Hive table types and ACID operations before an upgrade from HDP 2.x and after an
upgrade to Cloudera. The ownership of the Hive table file is a factor in determining table types and ACID operations
after the upgrade.

Table 2: HDP 2.x and Cloudera Table Type Comparison

HDP 2.x CDP

Table Type ACID v1 Format Owner (user) of
Hive Table File

Table Type ACID v2

External No Native or non-native hive or non-hive External No

Managed Yes ORC hive or non-hive Managed, updatable Yes

hive Managed, updatable YesManaged No ORC

non-hive External, with data
delete

No

hive Managed, insert only YesManaged No Native (but non-
ORC)

non-hive External, with data
delete

No

Managed No Non-native hive or non-hive External, with data
delete

No

Checking and correcting Hive table locations
As a Data Engineer, you need to understand the relocation of files after the upgrade process. The file type and other
factors affect the relocation during the upgrade.

About this task

The upgrade process changes table types in some cases. The following table compares Hive table types and ACID
operations before and after upgrading. The ownership of the Hive table file is a factor in determining table types and
ACID operations after the upgrade.

Table 4.1. Before and After Upgrading Table Type Comparison

Before Upgrading After Upgrading

56

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Table Type ACID v1 Format Owner (user) of Hive
Table File

Table Type ACID v2

External No Native or non-native hive or non-hive External No

Managed Yes ORC hive or non-hive Managed,
updatable**

Yes

hive Managed,
updatable**

YesManaged No ORC

non-hive External, with data
delete*

No

hive Managed, insert
only**

YesManaged No Native (but non-
ORC)

non-hive External, with data
delete*

No

Managed No Non-native hive or non-hive External, with data
delete*

No

* See Dropping an External Table Along with the Data.

** Not SparkSQL-compatible

If you had external files before the upgrade, the upgrade process carries the external files over to CDP after upgrading
with no change in location. The external files continue to reside in the /apps/hive/warehouse directory.

Managed, ACID tables that are not owned by the hive user remain managed tables after the upgrade, but hive
becomes the owner.

After the upgrade, the location of managed tables or partitions do not change under any one of the following
conditions:

• The old table or partition directory was not in its default location /apps/hive/warehouse before the upgrade.
• The old table or partition directory is in a different encryption zone than the new warehouse directory.

The /apps/hive/warehouse directory, which is the location of the Hive 2.x warehouse before upgrading, might or
might not exist after upgrading.

Procedure

1. Check the /apps/hive/warehouse directory for files that do not belong there after upgrading.

Files that do not belong in /apps/hive/warehouse are files tdescribed in the table above as managed files after
upgrading. The upgrade process should have moved the managed files to the new /warehouse/tablespace/
managed/hive/warehouse directory.

2. Check that the upgrade process moved managed files to /warehouse/tablespace/managed/hive.

3. Check that Hive places any new external tables you create after upgrading in /warehouse/tablespace/external/hive.

Configuration changes

Hive Configuration Property Changes
You need to know the property value changes made by the upgrade process as the change might impact your work.
You might need to consider reconfiguring property value defaults that the upgrade changes.

Hive Configuration Property Values

The upgrade process changes the default values of some Hive configuration properties and adds new properties. The
following list describes those changes that occur after upgrading from CDH or HDP to Cloudera.

57

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/using-hiveql/content/hive_drop_external_table_data.html

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

datanucleus.connectionPool.maxPoolSize

Before upgrade: 30

After upgrade: 10

datanucleus.connectionPoolingType

Before upgrade: BONECP

After upgrade: HikariCP

hive.auto.convert.join.noconditionaltask.size

Before upgrade: 20971520

After upgrade: 52428800

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.auto.convert.sortmerge.join

Before upgrade: FALSE in the old CDH; TRUE in the old HDP.

After upgrade: TRUE

hive.auto.convert.sortmerge.join.to.mapjoin

Before upgrade: FALSE

After upgrade: TRUE

hive.cbo.enable

Before upgrade: FALSE

After upgrade: TRUE

hive.cbo.show.warnings

Before upgrade: FALSE

After upgrade: TRUE

hive.compactor.worker.threads

Before upgrade: 0

After upgrade: 5

hive.compute.query.using.stats

Before upgrade: FALSE

After upgrade: TRUE

hive.conf.hidden.list

Before upgrade:

javax.jdo.option.ConnectionPassword,hive.server2.keystore.passwo
rd,hive.metastore.dbaccess.ssl.truststore.password,fs.s3.awsAcce
ssKeyId,fs.s3.awsSecretAccessKey,fs.s3n.awsAccessKeyId,fs.s3n.aw
sSecretAccessKey,fs.s3a.access.key,fs.s3a.secret.key,fs.s3a.prox
y.password,dfs.adls.oauth2.credential,fs.adl.oauth2.credential,f
s.azure.account.oauth2.client.secret

After upgrade:

javax.jdo.option.ConnectionPassword,hive.server2.keystore.passwo
rd,hive.druid.metadata.password,hive.driver.parallel.compilation
.global.limit

hive.conf.restricted.list

58

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Before upgrade:

hive.security.authenticator.manager,hive.security.authorization.
manager,hive.users.in.admin.role,hive.server2.xsrf.filter.enable
d,hive.spark.client.connect.timeout,hive.spark.client.server.con
nect.timeout,hive.spark.client.channel.log.level,hive.spark.clie
nt.rpc.max.size,hive.spark.client.rpc.threads,hive.spark.client.
secret.bits,hive.spark.client.rpc.server.address,hive.spark.clie
nt.rpc.server.port,hive.spark.client.rpc.sasl.mechanisms,hadoop.
bin.path,yarn.bin.path,spark.home,bonecp.,hikaricp.,hive.driver.
parallel.compilation.global.limit,_hive.local.session.path,_hive
.hdfs.session.path,_hive.tmp_table_space,_hive.local.session.pat
h,_hive.hdfs.session.path,_hive.tmp_table_space

After upgrade:

hive.security.authenticator.manager,hive.security.authorization.
manager,hive.security.metastore.authorization.manager,hive.secur
ity.metastore.authenticator.manager,hive.users.in.admin.role,hiv
e.server2.xsrf.filter.enabled,hive.security.authorization.enable
d,hive.distcp.privileged.doAs,hive.server2.authentication.ldap.b
aseDN,hive.server2.authentication.ldap.url,hive.server2.authenti
cation.ldap.Domain,hive.server2.authentication.ldap.groupDNPatte
rn,hive.server2.authentication.ldap.groupFilter,hive.server2.aut
hentication.ldap.userDNPattern,hive.server2.authentication.ldap.
userFilter,hive.server2.authentication.ldap.groupMembershipKey,h
ive.server2.authentication.ldap.userMembershipKey,hive.server2.a
uthentication.ldap.groupClassKey,hive.server2.authentication.lda
p.customLDAPQuery,hive.privilege.synchronizer.interval,hive.spar
k.client.connect.timeout,hive.spark.client.server.connect.timeou
t,hive.spark.client.channel.log.level,hive.spark.client.rpc.max.
size,hive.spark.client.rpc.threads,hive.spark.client.secret.bits
,hive.spark.client.rpc.server.address,hive.spark.client.rpc.serv
er.port,hive.spark.client.rpc.sasl.mechanisms,bonecp.,hive.druid
.broker.address.default,hive.druid.coordinator.address.default,h
ikaricp.,hadoop.bin.path,yarn.bin.path,spark.home,hive.driver.pa
rallel.compilation.global.limit,_hive.local.session.path,_hive.h
dfs.session.path,_hive.tmp_table_space,_hive.local.session.path,
_hive.hdfs.session.path,_hive.tmp_table_space

hive.default.fileformat.managed

Before upgrade: None

After upgrade: ORC

hive.default.rcfile.serde

Before upgrade: org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe

After upgrade: org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe

Not supported in Impala. Impala cannot read Hive-created RC tables.

hive.driver.parallel.compilation

Before upgrade: FALSE

After upgrade: TRUE

hive.exec.dynamic.partition.mode

Before upgrade: strict

After upgrade: nonstrict

In Cloudera Base on premises, accidental use of dynamic partitioning feature is not prevented by
default.

59

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

hive.exec.max.dynamic.partitions

Before upgrade: 1000

After upgrade: 5000

In Cloudera Base on premises, fewer restrictions on dynamic paritioning occur than in the pre-
upgrade CDH or HDP cluster.

hive.exec.max.dynamic.partitions.pernode

Before upgrade: 100

After upgrade: 2000

In Cloudera Base on premises, fewer restrictions on dynamic paritioning occur than in the pre-
upgrade CDH or HDP cluster.

hive.exec.post.hooks

Before upgrade:

com.cloudera.navigator.audit.hive.HiveExecHookContext,org.apache
.hadoop.hive.ql.hooks.LineageLogger

After upgrade: org.apache.hadoop.hive.ql.hooks.HiveProtoLoggingHook

A prime number is recommended.

hive.exec.reducers.max

Before upgrade: 1099

After upgrade: 1009

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default

hive.execution.engine

Before upgrade: mr

After upgrade: tez

Tez is now the only supported execution engine, existing queries that change execution mode to
Spark or MapReduce within a session, for example, fail.

hive.fetch.task.conversion

Before upgrade: minimal

After upgrade: more

hive.fetch.task.conversion.threshold

Before upgrade: 256MB

After upgrade: 1GB

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.hashtable.key.count.adjustment

Before upgrade: 1

After upgrade: 0.99

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.limit.optimize.enable

Before upgrade: FALSE

After upgrade: TRUE

hive.limit.pushdown.memory.usage

60

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Before upgrade: 0.1

After upgrade: 0.04

Exception: Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.mapjoin.hybridgrace.hashtable

Before upgrade: TRUE

After upgrade: FALSE

hive.mapred.reduce.tasks.speculative.execution

Before upgrade: TRUE

After upgrade: FALSE

hive.metastore.aggregate.stats.cache.enabled

Before upgrade: TRUE

After upgrade: FALSE

hive.metastore.disallow.incompatible.col.type.changes

Before upgrade: FALSE

After upgrade: TRUE

Schema evolution is more restrictive in Cloudera Base on premises than in CDH to avoid
data corruption. The new default disallows column type changes if the old and new types are
incompatible.

hive.metastore.dml.events

Before upgrade: FALSE

After upgrade: TRUE

hive.metastore.event.message.factory

Before upgrade: org.apache.hadoop.hive.metastore.messaging.json.ExtendedJSONMessageFactory

After upgrade: org.apache.hadoop.hive.metastore.messaging.json.gzip.GzipJSONMessageEncoder

hive.metastore.uri.selection

Before upgrade: SEQUENTIAL

After upgrade: RANDOM

hive.metastore.warehouse.dir

Before upgrade from CDH: /user/hive/warehouse

Before upgrade from HDP: /apps/hive/warehouse

After upgrade from CDH: /warehouse/tablespace/managed/hive

After upgrade from HDP: /warehouse/tablespace/managed/hive

For information about the location of old tables and new tables, which you create after the upgrade,
see Changes to CDH Hive Tables or Changes to HDP Hive tables.

hive.optimize.metadataonly

Before upgrade: FALSE

After upgrade: TRUE

hive.optimize.point.lookup.min

Before upgrade: 31

After upgrade: 2

hive.prewarm.numcontainers

61

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Before upgrade: 10

After upgrade: 3

hive.script.operator.env.blacklist

Before upgrade: hive.txn.valid.txns,hive.script.operator.env.blacklist

After upgrade: hive.txn.valid.txns,hive.txn.tables.valid.writeids,hive.txn.valid.writeids,hive.script.o
perator.env.blacklist

hive.security.authorization.sqlstd.confwhitelist

Before upgrade:

hive\.auto\..*hive\.cbo\..*hive\.convert\..*hive\.exec\.dynamic\
.partition.*hive\.exec\..*\.dynamic\.partitions\..*hive\.exec\.c
ompress\..*hive\.exec\.infer\..*hive\.exec\.mode.local\..*hive\.
exec\.orc\..*hive\.exec\.parallel.*hive\.explain\..*hive\.fetch.
task\..*hive\.groupby\..*hive\.hbase\..*hive\.index\..*hive\.ind
ex\..*hive\.intermediate\..*hive\.join\..*hive\.limit\..*hive\.l
og\..*hive\.mapjoin\..*hive\.merge\..*hive\.optimize\..*hive\.or
c\..*hive\.outerjoin\..*hive\.parquet\..*hive\.ppd\..*hive\.prew
arm\..*hive\.server2\.proxy\.userhive\.skewjoin\..*hive\.smbjoin
\..*hive\.stats\..*hive\.strict\..*hive\.tez\..*hive\.vectorized
\..*mapred\.map\..*mapred\.reduce\..*mapred\.output\.compression
\.codecmapred\.job\.queuenamemapred\.output\.compression\.typema
pred\.min\.split\.sizemapreduce\.job\.reduce\.slowstart\.complet
edmapsmapreduce\.job\.queuenamemapreduce\.job\.tagsmapreduce\.in
put\.fileinputformat\.split\.minsizemapreduce\.map\..*mapreduce\
.reduce\..*mapreduce\.output\.fileoutputformat\.compress\.codecm
apreduce\.output\.fileoutputformat\.compress\.typeoozie\..*tez\.
am\..*tez\.task\..*tez\.runtime\..*tez\.queue\.namehive\.transpo
se\.aggr\.joinhive\.exec\.reducers\.bytes\.per\.reducerhive\.cli
ent\.stats\.countershive\.exec\.default\.partition\.namehive\.ex
ec\.drop\.ignorenonexistenthive\.counters\.group\.namehive\.defa
ult\.fileformat\.managedhive\.enforce\.bucketmapjoinhive\.enforc
e\.sortmergebucketmapjoinhive\.cache\.expr\.evaluationhive\.quer
y\.result\.fileformathive\.hashtable\.loadfactorhive\.hashtable\
.initialCapacityhive\.ignore\.mapjoin\.hinthive\.limit\.row\.max
\.sizehive\.mapred\.modehive\.map\.aggrhive\.compute\.query\.usi
ng\.statshive\.exec\.rowoffsethive\.variable\.substitutehive\.va
riable\.substitute\.depthhive\.autogen\.columnalias\.prefix\.inc
ludefuncnamehive\.autogen\.columnalias\.prefix\.labelhive\.exec\
.check\.crossproductshive\.cli\.tez\.session\.asynchive\.compath
ive\.exec\.concatenate\.check\.indexhive\.display\.partition\.co
ls\.separatelyhive\.error\.on\.empty\.partitionhive\.execution\.
enginehive\.exec\.copyfile\.maxsizehive\.exim\.uri\.scheme\.whit
elisthive\.file\.max\.footerhive\.insert\.into\.multilevel\.dirs
hive\.localize\.resource\.num\.wait\.attemptshive\.multi\.insert
\.move\.tasks\.share\.dependencieshive\.support\.quoted\.identif
iershive\.resultset\.use\.unique\.column\.nameshive\.analyze\.st
mt\.collect\.partlevel\.statshive\.exec\.schema\.evolutionhive\.
server2\.logging\.operation\.levelhive\.server2\.thrift\.results
et\.serialize\.in\.taskshive\.support\.special\.characters\.tabl
enamehive\.exec\.job\.debug\.capture\.stacktraceshive\.exec\.job
\.debug\.timeouthive\.llap\.io\.enabledhive\.llap\.io\.use\.file
id\.pathhive\.llap\.daemon\.service\.hostshive\.llap\.execution\
.modehive\.llap\.auto\.allow\.uberhive\.llap\.auto\.enforce\.tre
ehive\.llap\.auto\.enforce\.vectorizedhive\.llap\.auto\.enforce\
.statshive\.llap\.auto\.max\.input\.sizehive\.llap\.auto\.max\.o
utput\.sizehive\.llap\.skip\.compile\.udf\.checkhive\.llap\.clie
nt\.consistent\.splitshive\.llap\.enable\.grace\.join\.in\.llaph
ive\.llap\.allow\.permanent\.fnshive\.exec\.max\.created\.filesh
ive\.exec\.reducers\.maxhive\.reorder\.nway\.joinshive\.output\.

62

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

file\.extensionhive\.exec\.show\.job\.failure\.debug\.infohive\.
exec\.tasklog\.debug\.timeouthive\.query\.id

After upgrade:

hive\.auto\..*hive\.cbo\..*hive\.convert\..*hive\.druid\..*hive\
.exec\.dynamic\.partition.*hive\.exec\.max\.dynamic\.partitions.
*hive\.exec\.compress\..*hive\.exec\.infer\..*hive\.exec\.mode.l
ocal\..*hive\.exec\.orc\..*hive\.exec\.parallel.*hive\.exec\.que
ry\.redactor\..*hive\.explain\..*hive\.fetch.task\..*hive\.group
by\..*hive\.hbase\..*hive\.index\..*hive\.index\..*hive\.interme
diate\..*hive\.jdbc\..*hive\.join\..*hive\.limit\..*hive\.log\..
*hive\.mapjoin\..*hive\.merge\..*hive\.optimize\..*hive\.materia
lizedview\..*hive\.orc\..*hive\.outerjoin\..*hive\.parquet\..*hi
ve\.ppd\..*hive\.prewarm\..*hive\.query\.redaction\..*hive\.serv
er2\.thrift\.resultset\.default\.fetch\.sizehive\.server2\.proxy
\.userhive\.skewjoin\..*hive\.smbjoin\..*hive\.stats\..*hive\.st
rict\..*hive\.tez\..*hive\.vectorized\..*hive\.query\.reexecutio
n\..*reexec\.overlay\..*fs\.defaultFSssl\.client\.truststore\.lo
cationdistcp\.atomicdistcp\.ignore\.failuresdistcp\.preserve\.st
atusdistcp\.preserve\.rawxattrsdistcp\.sync\.foldersdistcp\.dele
te\.missing\.sourcedistcp\.keystore\.resourcedistcp\.liststatus\
.threadsdistcp\.max\.mapsdistcp\.copy\.strategydistcp\.skip\.crc
distcp\.copy\.overwritedistcp\.copy\.appenddistcp\.map\.bandwidt
h\.mbdistcp\.dynamic\..*distcp\.meta\.folderdistcp\.copy\.listin
g\.classdistcp\.filters\.classdistcp\.options\.skipcrccheckdistc
p\.options\.mdistcp\.options\.numListstatusThreadsdistcp\.option
s\.mapredSslConfdistcp\.options\.bandwidthdistcp\.options\.overw
ritedistcp\.options\.strategydistcp\.options\.idistcp\.options\.
p.*distcp\.options\.updatedistcp\.options\.deletemapred\.map\..*
mapred\.reduce\..*mapred\.output\.compression\.codecmapred\.job\
.queue\.namemapred\.output\.compression\.typemapred\.min\.split\
.sizemapreduce\.job\.reduce\.slowstart\.completedmapsmapreduce\.
job\.queuenamemapreduce\.job\.tagsmapreduce\.input\.fileinputfor
mat\.split\.minsizemapreduce\.map\..*mapreduce\.reduce\..*mapred
uce\.output\.fileoutputformat\.compress\.codecmapreduce\.output\
.fileoutputformat\.compress\.typeoozie\..*tez\.am\..*tez\.task\.
.*tez\.runtime\..*tez\.queue\.namehive\.transpose\.aggr\.joinhiv
e\.exec\.reducers\.bytes\.per\.reducerhive\.client\.stats\.count
ershive\.exec\.default\.partition\.namehive\.exec\.drop\.ignoren
onexistenthive\.counters\.group\.namehive\.default\.fileformat\.
managedhive\.enforce\.bucketmapjoinhive\.enforce\.sortmergebucke
tmapjoinhive\.cache\.expr\.evaluationhive\.query\.result\.filefo
rmathive\.hashtable\.loadfactorhive\.hashtable\.initialCapacityh
ive\.ignore\.mapjoin\.hinthive\.limit\.row\.max\.sizehive\.mapre
d\.modehive\.map\.aggrhive\.compute\.query\.using\.statshive\.ex
ec\.rowoffsethive\.variable\.substitutehive\.variable\.substitut
e\.depthhive\.autogen\.columnalias\.prefix\.includefuncnamehive\
.autogen\.columnalias\.prefix\.labelhive\.exec\.check\.crossprod
uctshive\.cli\.tez\.session\.asynchive\.compathive\.display\.par
tition\.cols\.separatelyhive\.error\.on\.empty\.partitionhive\.e
xecution\.enginehive\.exec\.copyfile\.maxsizehive\.exim\.uri\.sc
heme\.whitelisthive\.file\.max\.footerhive\.insert\.into\.multil
evel\.dirshive\.localize\.resource\.num\.wait\.attemptshive\.mul
ti\.insert\.move\.tasks\.share\.dependencieshive\.query\.results
\.cache\.enabledhive\.query\.results\.cache\.wait\.for\.pending\
.resultshive\.support\.quoted\.identifiershive\.resultset\.use\.
unique\.column\.nameshive\.analyze\.stmt\.collect\.partlevel\.st
atshive\.exec\.schema\.evolutionhive\.server2\.logging\.operatio
n\.levelhive\.server2\.thrift\.resultset\.serialize\.in\.taskshi
ve\.support\.special\.characters\.tablenamehive\.exec\.job\.debu
g\.capture\.stacktraceshive\.exec\.job\.debug\.timeouthive\.llap
\.io\.enabledhive\.llap\.io\.use\.fileid\.pathhive\.llap\.daemon

63

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

\.service\.hostshive\.llap\.execution\.modehive\.llap\.auto\.all
ow\.uberhive\.llap\.auto\.enforce\.treehive\.llap\.auto\.enforce
\.vectorizedhive\.llap\.auto\.enforce\.statshive\.llap\.auto\.ma
x\.input\.sizehive\.llap\.auto\.max\.output\.sizehive\.llap\.ski
p\.compile\.udf\.checkhive\.llap\.client\.consistent\.splitshive
\.llap\.enable\.grace\.join\.in\.llaphive\.llap\.allow\.permanen
t\.fnshive\.exec\.max\.created\.fileshive\.exec\.reducers\.maxhi
ve\.reorder\.nway\.joinshive\.output\.file\.extensionhive\.exec\
.show\.job\.failure\.debug\.infohive\.exec\.tasklog\.debug\.time
outhive\.query\.idhive\.query\.tag

hive.security.command.whitelist

Before upgrade: set,reset,dfs,add,list,delete,reload,compile

After upgrade: set,reset,dfs,add,list,delete,reload,compile,llap

hive.server2.enable.doAs

Before upgrade: TRUE (in case of an insecure cluster only)

After upgrade: FALSE (in all cases)

Affects only insecure clusters by turning off impersonation. Permission issues are expected to arise
for affected clusters.

hive.server2.idle.session.timeout

Before upgrade: 12 hours

After upgrade: 24 hours

Exception:Preserves pre-upgrade value if old default is overridden; otherwise, uses new default.

hive.server2.max.start.attempts

Before upgrade: 30

After upgrade: 5

hive.server2.parallel.ops.in.session

Before upgrade: TRUE

After upgrade: FALSE

A Tez limitation requires disabling this property; otherwise, queries submitted concurrently on a
single JDBC connection fail or execute slower.

hive.server2.support.dynamic.service.discovery

Before upgrade: FALSE

After upgrade: TRUE

hive.server2.tez.initialize.default.sessions

Before upgrade: FALSE

After upgrade: TRUE

hive.server2.thrift.max.worker.threads

Before upgrade: 100

After upgrade: 500

Exception: Preserves pre-upgrade value if the old default is overridden; otherwise, uses new default.

hive.server2.thrift.resultset.max.fetch.size

Before upgrade: 1000

After upgrade: 10000

64

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

hive.service.metrics.file.location

Before upgrade: /var/log/hive/metrics-hiveserver2/metrics.log

After upgrade: /var/log/hive/metrics-hiveserver2-hiveontez/metrics.log

This location change is due to a service name change.

hive.stats.column.autogather

Before upgrade: FALSE

After upgrade: TRUE

hive.stats.deserialization.factor

Before upgrade: 1

After upgrade: 10

hive.support.special.characters.tablename

Before upgrade: FALSE

After upgrade: TRUE

hive.tez.auto.reducer.parallelism

Before upgrade: FALSE

After upgrade: TRUE

hive.tez.bucket.pruning

Before upgrade: FALSE

After upgrade: TRUE

hive.tez.container.size

Before upgrade: -1

After upgrade: 4096

hive.tez.exec.print.summary

Before upgrade: FALSE

After upgrade: TRUE

hive.txn.manager

Before upgrade: org.apache.hadoop.hive.ql.lockmgr.DummyTxnManager

After upgrade: org.apache.hadoop.hive.ql.lockmgr.DbTxnManager

hive.vectorized.execution.mapjoin.minmax.enabled

Before upgrade: FALSE

After upgrade: TRUE

hive.vectorized.execution.mapjoin.native.fast.hashtable.enabled

Before upgrade: FALSE

After upgrade: TRUE

hive.vectorized.use.row.serde.deserialize

Before upgrade: FALSE

After upgrade: TRUE

65

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Customizing critical Hive configurations
As Administrator, you need property configuration guidelines. You need to know which properties you need to
reconfigure after upgrading. You must understand which the upgrade process carries over from the old cluster to the
new cluster.

The Cloudera upgrade process tries to preserve your Hive configuration property overrides. These overrides are the
custom values you set to configure Hive in the old CDH or HDP cluster. The upgrade process does not perserve all
overrides. For example, a custom value you set for hive.exec.max.dynamic.partitions.pernode is preserved. In the
case of other properties, for example hive.cbo.enable, the upgrade ignores any override and just sets the Cloudera-
recommended value.

The upgrade process does not preserve overrides to the configuration values of the following properties that you
likely need to reconfigure to meet your needs:

• hive.conf.hidden.list
• hive.conf.restricted.list
• hive.exec.post.hooks
• hive.script.operator.env.blacklist
• hive.security.authorization.sqlstd.confwhitelist
• hive.security.command.whitelist

The Apache Hive Wiki describes these properties. The values of these properties are lists.

The upgrade process ignores your old list and sets a new generic list. For example, the hive.security.command.whitel
ist value is a list of security commands you consider trustworthy and want to keep. Any overrides of this list that you
set in the old cluster are not preserved. The new default is probably a shorter (more restrictive) list than the original
default you were using in the old cluster. You need to customize this Cloudera to meet your needs.

Check and change each property listed above after upgrading as described in the next topic.

Consider reconfiguring more property values than the six listed above. Even if you did not override the default value
in the old cluster, the Cloudera default might have changed in a way that impacts your work.

Related Information
Hive Configuration Property Changes

Hive Configuration Requirements and Recommendations

Apache Hive Wiki: Configuration Properties

Setting Hive Configuration Overrides
You need to know how to configure the critical customizations that the upgrade process does not preserve from your
old Hive cluster. Referring to your records about your old configuration, you follow steps to set at least six critical
property values.

About this task
By design, the six critical properties that you need to customize are not visible in Cloudera Manager, as you can see
from the Visible in Cloudera Manager column of Configurations Requirements and Recommendations. You use the
Safety Valve to add these properties to hive-site.xml as shown in this task.

Procedure

1. In Cloudera Manager Clusters select the Hive on Tez service. Click Configuration, and search for hive-site.xml.

66

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/ug_hive_configuration_changes.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/ug_hive_user_configuration.html
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

2. In Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml, click +.

3. In Name, add the hive.conf.hidden.list property.

4. In Value, add your custom list.

5. Customize the other critical properties: hive.conf.restricted.list, hive.exec.post.hooks, hive.script.operator.env.bla
cklist, hive.security.authorization.sqlstd.confwhitelist, hive.security.command.whitelist.

Use hive.security.authorization.sqlstd.confwhitelist.append, for example, to set up the list.

6. Save the changes and restart the Hive service.

7. Look at the Configurations Requirements and Recommendations to understand which overrides were preserved or
not.

Related Information
Hive Configuration Property Changes

Hive Configuration Requirements and Recommendations

Apache Hive Wiki: Configuration Properties

Hive Configuration Requirements and Recommendations
You need to set certain Hive and HiveServer (HS2) configuration properties after upgrading. You review
recommendations for setting up Cloudera Base on premises for your needs, and understand which configurations
remain unchanged after upgrading, which impact performance, and default values.

Requirements and Recommendations

The following table includes the Hive service and HiveServer properties that the upgrade process changes. Other
property values (not shown) are carried over unchanged from CDH or HDP to Cloudera

• Set After Upgrade column: properties you need to manually configure after the upgrade to Cloudera. Pre-existing
customized values are not preserved after the upgrade.

• Default Recommended column: properties that the upgrade process changes to a new value that you are strongly
advised to use.

• Impacts Performance column: properties changed by the upgrade process that you set to tune performance.
• Safety Value Overrides column: How the upgrade process handles Safety Valve overrides.

• Disregards: the upgrade process removes any old CDH Safety Valve configuration snippets from the new CDP
configuration.

• Preserves means the upgrade process carries over any old CDH snippets to the new CDP configuration.
• Not applicable means the value of the old parameter is preserved.

• Visible in CM column: property is visible in Cloudera Manager after upgrading. Cloudera Manager after
upgrading.

If a property is not visible, and you want to configure it, use the Cloudera Manager Safety Valve to safely add the
parameter to the correct file, for example to a cluster-wide, hive-site.xml file.

67

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/ug_hive_configuration_changes.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/ug_hive_user_configuration.html
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Table 3:

Property Set After
Upgrade

Default
Recommended

Impacts
Performance

New
Feature

Safety Valve Overrides Visible
in CM

datanucleus.connectionPool.maxPoolSize # Preserve

datanucleus.connectionPoolingType # Disregard

hive.async.log.enabled Disregard #

hive.auto.convert.join.noconditionaltask.size Not applicable #

hive.auto.convert.sortmerge.join Preserve

hive.auto.convert.sortmerge.join.to.mapjoin Preserve

hive.cbo.enable Disregard #

hive.cbo.show.warnings Disregard

hive.compactor.worker.threads # Disregard #

hive.compute.query.using.stats # Disregard #

hive.conf.hidden.list # Disregard

hive.conf.restricted.list # Disregard

hive.default.fileformat.managed Disregard #

hive.default.rcfile.serde # Preserve

hive.driver.parallel.compilation Disregard #

hive.exec.dynamic.partition.mode Disregard

hive.exec.max.dynamic.partitions Preserve

hive.exec.max.dynamic.partitions.pernode Preserve

hive.exec.post.hooks # Disregard

hive.exec.reducers.max # or
other
prime
number

Not applicable #

hive.execution.engine Disregard

hive.fetch.task.conversion # Not applicable #

hive.fetch.task.conversion.threshold # Not appliable #

hive.hashtable.key.count.adjustment # Preserve

hive.limit.optimize.enable # Disregard

hive.limit.pushdown.memory.usage # Not Applicable #

hive.mapjoin.hybridgrace.hashtable # # Disregard

hive.mapred.reduce.tasks.speculative.execution # Disregard

hive.metastore.aggregate.stats.cache.enabled # # Disregard

hive.metastore.disallow.incompatible.col.type.changes Disregard

hive.metastore.dml.events Disregard #

hive.metastore.event.message.factory # Disregard

hive.metastore.uri.selection # Disregard

hive.metastore.warehouse.dir Preserve #

hive.optimize.metadataonly # Disregard

hive.optimize.point.lookup.min Disregard

68

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Property Set After
Upgrade

Default
Recommended

Impacts
Performance

New
Feature

Safety Valve Overrides Visible
in CM

hive.prewarm.numcontainers Disregard

hive.script.operator.env.blacklist # Disregard

hive.security.authorization.sqlstd.confwhitelist# Disregard

hive.security.command.whitelist # Disregard

hive.server2.enable.doAs Disregard #

hive.server2.idle.session.timeout Not applicable #

hive.server2.max.start.attempts Preserve

hive.server2.parallel.ops.in.session Preserve

hive.server2.support.dynamic.service.discovery # Disregard #

hive.server2.tez.initialize.default.sessions # Disregard

hive.server2.thrift.max.worker.threads Not Applicable #

hive.server2.thrift.resultset.max.fetch.size Preserve

hive.service.metrics.file.location Disregard #

hive.stats.column.autogather # Disregard

hive.stats.deserialization.factor # Disregard

hive.support.special.characters.tablename # Disregard

hive.tez.auto.reducer.parallelism # Disregard #

hive.tez.bucket.pruning # Disregard #

hive.tez.container.size # Disregard #

hive.tez.exec.print.summary # Disregard #

hive.txn.manager # Disregard #

hive.vectorized.execution.mapjoin.minmax.enabled # Disregard

hive.vectorized.execution.mapjoin.native.fast.hashtable.enabled# Disregard

hive.vectorized.use.row.serde.deserialize # Disregard

Configuring HMS for high availability
To provide failover to a secondary Hive metastore if your primary instance goes down, you need to know how to add
a Metastore role in Cloudera Manager and configure a property.

About this task
Multiple HMS instances run in active/active mode. No load balancing occurs. An HMS client always reaches the first
instance unless it is down. In this case, the client scans the hive.metastore.uris property that lists the HMS instances
for a replacement HMS. The second HMS is the designated replacement if hive.metastore.uri.selection is set to
SEQUENTIAL (recommended and the default); otherwise, the replacement is selected randomly from the list if hive
.metastore.uri.selection is set to RANDOM.

Before you begin
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Procedure

1. In Cloudera Manager, click Clusters Hive Configuration .

69

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

2. Take one of the following actions:

• If you have a cluster secured by Kerberos, search for Hive Delegation Token Store, which specifies storage for
the Kerberos token as described below.

• If you have an unsecured cluster, skip the next step.

3. Select org.apache.hadoop.hive.thrift.DBTokenStore, and save the change.

Storage for the Kerberos delegation token is defined by the hive.cluster.delegation.token.store.class property.
The available choices are Zookeeper, the Metastore, and memory. Cloudera recommends using the database by
setting the org.apache.hadoop.hive.thrift.DBTokenStore property.

4. Click Instances Actions Add Role Instances

5. In Assign Roles, in Metastore Server, click Select Hosts.

6. In Hosts Selected, scroll and select the host that you want to serve as the backup Metastore, and click OK.

7. Click Continue until you exit the wizard.

8. Start the Metastore role on the host from the Actions menu.

The hive.metastore.uris property is updated automatically.

9. To check or to change the hive.metastore.uri.selection property, go to Clusters Hive Configurations , and search
for Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml.

10. Add the property and value (SEQUENTIAL or RANDOM).

Setting up Hive metastore for Atlas
As Administrator, you might plan to recommend Atlas for Hive metadata management and data governance. You
have to check that Hive metastore for Atlas is set up, so users can build catalogs of data assets, classify, and govern
the assets. If Atlas is not set up you learn how to do so. This section is not applicable if you are upgrading to CDP
Private Cloud Base 7.1.7.

About this task
In this task, you set the name of the Atlas service for Hive metastore to use.

Procedure

1. In Cloudera Manager, click Clusters Hive Configurations .

2. Search for Atlas Service.

70

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

3. Choose a method based on the results of your search:

• If Cloudera Manager finds the Atlas Service, check the checkbox to enable the Hive Metastore hook in your
Cloudera Manager instance.

• If Cloudera Manager does not find the Atlas Service, in Hive Service Advanced Configuration Snippet (Safety
Valve) for atlas-application properties, enter an XML snippet in the value element that provides the name of
your Atlas service, myatlasservice in the example below.

<property>
 <name>atlas_service</name>
 <value>myatlasservice</value>
</property>

4. Save changes.

5. Restart the Hive metastore service.

Changing the Hive warehouse location
You can change the location of the Hive warehouse by using the configuration settings in your Cloudera Manager
instance.

Procedure

1. In Cloudera Manager, click Clusters > Hive (the Hive Metastore service) > Configuration, and change the
hive.metastore.warehouse.dir property value to the path you specified for the new Hive warehouse directory.

2. Change the hive.metastore.warehouse.external.dir property value to the path you specified for the Hive warehouse
external directory.

3. Save the above configuration changes.

In Cloudera Manager, navigate to the Hive service and from the Actions drop-down, run the services:

• Create Hive Warehouse Directory
• Create Hive Warehouse External Directory

4. Restart the required services for the changes to take effect.

Related Information
Ranger RMS Authorization for Hive-HDFS

HDFS ACL Permissions Model

HDFS ACLS

71

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-rms-configuring-and-using/topics/security-ranger-rms-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_sba_permissions_model.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hdfs-acls/topics/hdfs-acls.html

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Removing the LLAP Queue
Before upgrading from HDP to CDP, if you used LLAP, a YARN interactive query queue was created. This queue is
carried over to your CDP cluster. You must remove this queue, likely named llap, after the upgrade.

About this task
When you set up LLAP in an HDP cluster, Ambari creates a queue named llap by default; however, you might have
created the LLAP queue manually and assigned a different name to the queue. Look for your LLAP and remove it as
follows:

Note: LLAP is not supported on Cloudera Private Cloud Base.

Procedure

1. In Cloudera Manager, select Clusters YARN YARN Queue Manager UI .
A graphical queue hierarchy is displayed in the Overview tab.

2.

Click the options menu for the interactive query queue.

3. Click Delete Queue, and confirm deletion.

Security tasks
After an in-place upgrade to Cloudera, as Administrator, you might need to perform a few security tasks, depending
on the type of security you set up, Ranger or HDFS Access Control Lists (ACLs), as well as your data encryption
requirements and use of clients to access Hive.

Making the Hive plugin for Ranger visible
After upgrading from HDP or CDH clusters to Cloudera, the Hive plugin for the Hive Metastore and HiveServer2
appears in the Ranger Admin UI unless configuration property problems due to upgrading exist. You can rectify the
incorrect properties to fix the problem.

About this task
If the Hive Metastore plugin does not appear in the Ranger Admin UI, you must remove the following property
settings from Hive Metastore hive-site.xml safety valve:

• hive.security.authorization.enabled
• hive.security.authorization.manager
• hive.security.metastore.authorization.manager

If the HiveServer2 plugin does not appear in the Ranger Admin UI, you must remove the following property settings
from HiveServer2 hive-site.xml safety valve:

• hive.security.authorization.enabled
• hive.security.authorization.manager
• hive.security.metastore.authorization.manager
• hive.security.authenticator.manager

After removing these configuration properties, restart the Hive Metastore and HiveServer2 services from Cloudera
Manager. Next, you must check whether the Ranger Hive Metastore and HiveServer2 plugins are enabled
successfully. To do so:

72

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Procedure

1. From Cloudera Manager, go to Clusters Ranger Ranger Admin Web UI Audit Plugin Status .

The Hadoop SQL service type for the hiveMetastore and hiveServer2 applications should appear. If so, skip the
next step. Your configuration is ok.

2. If, after removing the Hive Metastore and HiveServer2 configuration properties from the respective hive-ste.xml
safety valves, the Hive Metastore and HiveServer2 plugins are NOT visible, you must confirm whether or not the
following configuration properties appear in hive-site.xml:

For Hive Metastore, confirm whether or not the following key-value pair appears in hive-site.xml:

Key: hive.metastore.pre.event.listeners

Value: org.apache.hadoop.hive.ql.security.authorization.plugin.metastore.HiveMetaStoreAuthorizer

If this key-value pair does not appear in hive-site.xml, then add it to the Hive Metastore hive-site.xml safety valve.

For HiveServer2, confirm whether or not the following key value pair appears in hive-site.xml:

Key: hive.security.authenticator.manager

Value: org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator

If this key-value pair does not appear in hive-site.xml, then add it to the HiveServer2 hive-site.xml safety valve.

Configuring authorization to tables
Although the upgrade process makes no change to the location of external tables, you need to set up access to external
tables in HDFS. If you choose the recommended Ranger security model for authorization, you need to set up policies
and configure Hive metastore (HMS).

About this task

Set up access to external tables in HDFS using one of the following methods.

• Set up a Hive HDFS policy in Ranger (recommended) to include the paths to external table data.
• Put an HDFS ACL in place. Store the external text file, for example a comma-separated values (CSV) file, in

HDFS that will serve as the data source for the external table.

73

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

If you want to use Ranger to authorize access to your tables, you must configure a few HMS properties for
authorization in addition to setting up Ranger policies. If you have not configured HMS, attempting to create a table
using Spark SQL, Beeline, or Hue results in the following error:

org.apache.hadoop.hive.ql.ddl.DDLTask. MetaException(message:No privilege 'C
reate' found for outputs { database:DATABASE_NAME, table:TABLE_NAME})

Related Information
Authorizing Apache Hive Access

Configuring HMS properties for authorization

Setting up access control lists
Several sources of information about setting up HDFS ACLS plus a brief Ranger overview and pointer to Ranger
information prepare you to set up Hive authorization.

In Cloudera Base on premises, HDFS supports POSIX ACLs (Access Control Lists) to assign permissions to users
and groups. In lieu of Ranger policies, you use HDFS ACLs to check and make any necessary changes in HDFS
permission changes. For more information, see HDFS ACLs, Apache Software Foundation HDFS Permissions Guide,
and HDFS ACL Permissions.

In Ranger, you give multiple groups and users specific permissions based on your use case. You apply permissions to
a directory tree instead of dealing with individual files. For more information, see Authorizing Apache Hive Access.

If possible, you should use Ranger policies over HDFS ACLs to control HDFS access. Controlling HDFS access
through Ranger provides a single, unified interface for understanding and managing your overall governance
framework and policy design. If you need to mimic the legacy Sentry HDFS ACL Sync behavior for Hive and Impala
tables, consider using Ranger RMS.

Related Information
Ranger RMS Authorization for Hive-HDFS

HDFS ACLS

Apache Hive 3 Architectural Overview

Configure a Resource-based Policy: Hive

HDFS ACL Permissions Model

Configure encryption zone security
Under certain conditions, you as Administrator, need to perform a security-related task to allow users to access to
tables stored in encryption zones. You find out how to prevent access problems to these tables.

About this task
Hive on Tez cannot run some queries on tables stored in encryption zones under certain conditions. Perform the
following procedure only when the cluster uses self-signed certificates.

Important: Skip this task for clusters where TLS certificates are properly signed by a Certificate Authority
(CA), and the CA is in the truststore files.

Procedure

1. Copy the ssl-client.xml file to a directory that is available on all hosts.

2. In Cloudera Manager, click Clusters Hive on Tez Configuration .

3. Search for the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting.

4.
In the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting, click .

74

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_hive_authorization_models.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-metastore/topics/hive-hms-add-property.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-rms-configuring-and-using/topics/security-ranger-rms-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hdfs-acls/topics/hdfs-acls-examples.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive-apache-hive-3-architectural-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_sba_permissions_model.html

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

5. In Name enter the property tez.aux.uris and in value enter path-to-ssl-client.xml.

Ensure that you include the file URI scheme in the path. For example:

tez.aux.uris=file:///etc/hadoof/conf

Configure edge nodes as gateways
If you use command-line clients, such as Sqoop, to access Hive, you must configure these gateways to use defaults
for your service. You can accomplish this task in a few steps.

About this task
By default, the HS2 instances configured in the migration already have the default beeline-site.xml file defined for the
service. Other hosts do not. Configure these hosts as a gateway for that service.

Procedure

1. Find the notes you made before the upgrade about edge nodes and default, connected endpoints.

2. In Cloudera Manager, configure hosts other than HiveServer (HS2) hosts that you want to be Hive Gateway nodes
as gateways for the default beeline-site.xml file for the gateway service.

Configure HiveServer HTTP mode
If you use Knox, you might need to change the HTTP mode configuration. If you installed Knox on Cloudera Base
on premises and want to proxy HiveServer with Knox, you need to change the default HiveServer transport mode
(hive.server2.transport.mode).

Procedure

1. Click Cloudera Manager Clusters HIVE_ON_TEZ Configuration

2. In Search, type transport.

3. In HiveServer2 Transport Mode, select http.

4. Save and restart Hive on Tez.

Handling syntax changes
You need to modify queries affected by changes to Hive syntax after upgrading to CDP. Hive has changed the syntax
related to `db.table` references, such as CREATE TABLE `mydb.mytable` … . Other syntax changes involve the
LOCATION clause in CREATE TABLE. Hive in CDP supports the enhancement to CREATE TABLE that adds the
MANAGEDLOCATION clause.

75

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Handling table reference syntax
For ANSI SQL compliance, Hive 3.x rejects `db.table` in SQL queries as described by the Hive-16907 bug fix.
A dot (.) is not allowed in table names. As a Data Engineer, you need to ensure that Hive tables do not contain
these references before migrating the tables to Cloudera, that scripts are changed to comply with the SQL standard
references, and that users are aware of the requirement.

About this task

To change queries that use such `db.table` references thereby preventing Hive from interpreting the entire db.table
string incorrectly as the table name, you enclose the database name and the table name in backticks as follows:

A dot (.) is not allowed in table names.

Procedure

1. Find a table having the problematic table reference.
For example, math.students appears in a CREATE TABLE statement.

2. Enclose the database name and the table name in backticks.

CREATE TABLE `math`.`students` (name VARCHAR(64), age INT, gpa DECIMAL(3
,2));

LOCATION and MANAGEDLOCATION clauses
Before upgrading, your Hive version might have supported using the LOCATION clause in queries to create either
managed or external tables or databases for managed and external tables. After upgrading, Hive stores managed
and external tables in separate HDFS locations. CREATE TABLE limits the use of the LOCATION clause, and
consequently requires a change to your queries. Hive in Cloudera also supports a new location-related clause.

External table limitation for creating table locations

Hive assigns a default location in the warehouse for external tables—/warehouse/tablespace/external/hive. In
Cloudera, Hive does not allow the LOCATION clause in queries to create a managed table. Using this clause, you can
specify a location only when creating external tables. For example:

CREATE EXTERNAL TABLE my_external_table (a string, b string)
ROW FORMAT SERDE 'com.mytables.MySerDe'
WITH SERDEPROPERTIES ("input.regex" = "*.csv")
LOCATION '/warehouse/tablespace/external/hive/marketing';

Table MANAGEDLOCATION clause

In Cloudera, Hive has been enhanced to include a MANAGEDLOCATION clause to specify the location of managed
tables as shown in the following syntax:

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name
 [COMMENT database_comment]
 [LOCATION external_table_path]
 [MANAGEDLOCATION managed_table_directory_path]
 [WITH DBPROPERTIES (property_name=property_value, ...)];

Hive assigns a default location in the warehouse for managed tables—/warehouse/tablespace/managed/hive. In the
MANAGEDLOCATION clause, you specify a top level directory for managed tables when creating a Hive database.

76

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Important: Do not use the LOCATION clause to specify the location of managed tables. This clause is only
used to specify the location of external tables. Use the MANAGEDLOCATION clause if you are creating
managed tables. You must also ensure that you do not set LOCATION and MANAGEDLOCATION to the
same HDFS path.

Use DESCRIBE DATABASE db_name; to view the root location of the database on the filesystem.

Related Information
Create a default directory for managed tables

Key semantic changes and workarounds
As SQL Developer, Analyst, or other Hive user, you need to know potential problems with queries due to semantic
changes. Some of the operations that changed were not widely used, so you might not encounter any of the problems
associated with the changes.

Over the years, Apache Hive committers enhanced versions of Hive supported in legacy releases of CDH and HDP,
with users in mind. Changes were designed to maintain compatibility with Hive applications. Consequently, few
syntax changes occurred over the years. A number of semantic changes, described in this section did occur, however.
Workarounds are described for these semantic changes.

Casting timestamps
Results of applications that cast numerics to timestamps differ from Hive 2 to Hive 3. Apache Hive changed the
behavior of CAST to comply with the SQL Standard, which does not associate a time zone with the TIMESTAMP
type.

Before Upgrade to Cloudera

Casting a numeric type value into a timestamp could be used to produce a result that reflected the time zone of the
cluster. For example, 1597217764557 is 2020-08-12 00:36:04 PDT. Running the following query casts the numeric to
a timestamp in PDT:

> SELECT CAST(1597217764557 AS TIMESTAMP);
| 2020-08-12 00:36:04 |

After Upgrade to Cloudera

Casting a numeric type value into a timestamp produces a result that reflects the UTC instead of the time zone of the
cluster. Running the following query casts the numeric to a timestamp in UTC.

> SELECT CAST(1597217764557 AS TIMESTAMP);
| 2020-08-12 07:36:04.557 |

Action Required

Change applications. Do not cast from a numeral to obtain a local time zone. Built-in functions from_utc_timestamp
and to_utc_timestamp can be used to mimic behavior before the upgrade.

Related Information
Apache Hive web site summary of timestamp semantics

Changing incompatible column types
A default configuration change can cause applications that change column types to fail.

Before Upgrade to Cloudera

In HDP 2.x and CDH 5.x and CDH 6 hive.metastore.disallow.incompatible.col.type.changes is false by default to
allow changes to incompatible column types. For example, you can change a STRING column to a column of an
incompatible type, such as MAP<STRING, STRING>. No error occurs.

77

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_managed_location.html
https://cwiki.apache.org/confluence/display/Hive/Different+TIMESTAMP+types

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

After Upgrade to Cloudera

In Cloudera, hive.metastore.disallow.incompatible.col.type.changes is true by default. Hive prevents changes to
incompatible column types. Compatible column type changes, such as INT, STRING, BIGINT, are not blocked.

Action Required

Change applications to disallow incompatible column type changes to prevent possible data corruption. Check
ALTER TABLE statements and change those that would fail due to incompatible column types.

Understanding CREATE TABLE behavior
Hive table creation has changed significantly since Hive 3 to improve useability and functionality. If you are
upgrading from CDH or HDP, you must understand the changes affecting legacy table creation behavior.

Hive has changed table creation in the following ways:

• Creates ACID-compliant table, which is the default in Cloudera
• Supports simple writes and inserts
• Writes to multiple partitions
• Inserts multiple data updates in a single SELECT statement
• Eliminates the need for bucketing.

If you have an ETL pipeline that creates tables in Hive, the tables will be created as ACID. Hive now tightly controls
access and performs compaction periodically on the tables. Using ACID-compliant, transactional tables causes no
performance or operational overload. The way you access managed Hive tables from Spark and other clients changes.
In Cloudera, access to external tables requires you to set up security access permissions.

You must understand the behavior of the CREATE TABLE statement in legacy platforms like CDH or HDP and how
the behavior changes after you upgrade to Cloudera.

Before upgrading to Cloudera Base on premises

In CDH 5, CDH 6, and HDP 2, by default CREATE TABLE creates a non-ACID managed table in plain text format.

In HDP 3 and CDP 7.1.0 through 7.1.7.x, by default CREATE TABLE creates either a full ACID transactional table
in ORC format or insert-only ACID transactional tables for all other table formats.

After upgrading to Cloudera Base on premises

• If you are upgrading from HDP 2, CDH 5, or CDH 6 to CDP 7.1.0 through CDP 7.1.8, by default CREATE
TABLE creates a full ACID transactional table in ORC format or insert-only ACID transactional tables for all
other table formats.

• If you are upgrading from HDP 3 or CDP 7.1.0 through 7.1.7.x to CDP 7.1.8, the existing behavior persists and
CREATE TABLE creates either a full ACID transactional table in ORC format or insert-only ACID transactional
tables for all other table formats.

Now that you understand the behavior of the CREATE TABLE statement, you can choose to modify the default table
behavior by configuring certain properties. The order of preference for configuration is as follows:

Modify the default CREATE TABLE behavior
Override default behavior when creating the table

Irrespective of the database, session, or site-level settings, you can override the default table
behavior by using the MANAGED or EXTERNAL keyword in the CREATE TABLE statement.

CREATE [MANAGED][EXTERNAL] TABLE foo (id INT);

Set the default table type at a database level

78

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

You can use the database property, defaultTableType=EXTERNAL or ACID to specify the default
table type to be created using the CREATE TABLE statement. You can specify this property when
creating the database or at a later point using the ALTER DATABASE statement. For example:

CREATE DATABASE test_db WITH DBPROPERTIES ('defaultTableType'='E
XTERNAL');

In this example, tables created under the test_db database using the CREATE TABLE statement
creates external tables with the purge fucntionality enabled (external.table.purge = 'true').

You can also choose to configure a database to allow only external tables to be created and prevent
creation of ACID tables. While creating a database, you can set the database property, EXTER
NAL_TABLES_ONLY=true to ensure that only external tables are created in the database. For
example:

CREATE DATABASE test_db WITH DBPROPERTIES ('EXTERNAL_TABLES_ONLY
'='true');

Set the default table type at a session level

You can configure the CREATE TABLE behavior within an existing beeline session by setting
hive.create.as.external.legacy to true or false. Setting the value to true results in configuring the
CREATE TABLE statement to create external tables by default.

When the session ends, the default CREATE TABLE behavior also ends.

Set the default table type at a site level

You can configure the CREATE TABLE behavior at the site level by configuring the hive.create.
as.insert.only and hive.create.as.acid properties in Cloudera Manager under Hive configuration.
When configured at the site level, the behavior persists from session to session. For more
information, see Configuring CREATE TABLE behavior.

If you are a Spark user, switching to legacy behavior is unnecessary. Calling ‘create table’ from SparkSQL, for
example, creates an external table after upgrading to Cloudera as it did before the upgrade. You can connect to Hive
using the Hive Warehouse Connector (HWC) to read Hive ACID tables from Spark. To write ACID tables to Hive
from Spark, you use the HWC and HWC API. Spark creates an external table with the purge property when you do
not use the HWC API. For more information, see Hive Warehouse Connector for accessing Spark data.

Related Information
HDFS ACLS

Hive Warehouse Connector for accessing Apache Spark data

Spark Direct Reader for accessing Spark data

Apache Hive 3 Key Features

Apache Hive 3 Tables

Configuring legacy CREATE TABLE behavior
After you upgrade to Cloudera Base on premises and migrate old tables, the legacy CREATE TABLE behavior of
Hive is no longer available by default and you might want to switch to the legacy behavior. Legacy behavior might
solve compatibility problems with your scripts during data migration, for example, when running ETL.

About this task
In Cloudera, running a CREATE TABLE statement by default creates a full ACID table for ORC file format and
insert-only ACID table for other file formats. You can change the default behavior to use the legacy CREATE
TABLE behavior. When you configure legacy behavior, CREATE TABLE creates external tables with the purge
functionality enabled (external.table.purge = 'true'). Therefore, when the table is dropped, data is also deleted from the
file system.

You can configure legacy CREATE TABLE behavior at the site level by configuring properties in Cloudera Manager.
When configured at the site level, the behavior persists from session to session.

79

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hdfs-acls/topics/hdfs-acls-examples.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_spark_direct_reader.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive_whats_new_in_this_release_hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_hive_3_tables.html

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

Procedure

1. In Cloudera Manager, click Clusters and select the Hive on Tez service.

2. From the Hive on Tez service, go to the Configuration tab and search for hive.create.

3. If the following properties are selected, clear the selection to enable legacy CREATE TABLE behavior.

• Default Table Format - Create Tables as ACID Insert Only (hive.create.as.insert.only)
• Default Table Format - Create Tables as Full ACID (hive.create.as.acid)

Results
Legacy behavior is enabled and the CREATE TABLE statement now creates external tables with the external.table.p
urge table property set to true.
Related Information
Change DROP behavior

Dropping partitions
The OFFLINE and NO_DROP keywords in the CASCADE clause for dropping partitions causes performance
problems and is no longer supported.

Before Upgrade to Cloudera Base on premises

You could use OFFLINE and NO_DROP keywords in the DROP CASCADE clause to prevent partitions from being
read or dropped.

After Upgrade to Cloudera Base on premises

OFFLINE and NO_DROP are not supported in the DROP CASCADE clause.

Action Required

Change applications to remove OFFLINE and NO_DROP from the DROP CASCADE clause. Use an authorization
scheme, such as Ranger, to prevent partitions from being dropped or read.

Handling output of greatest and least functions
To calculate the greatest (or least) value in a column, you need to work around a problem that occurs when the
column has a NULL value.

Before Upgrade to Cloudera

The greatest function returned the highest value of the list of values. The least function returned the lowest value of
the list of values.

80

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_drop_external_table_data.html

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

After Upgrade to Cloudera

Returns NULL when one or more arguments are NULL.

Action Required

Use NULL filters or the nvl function on the columns you use as arguments to the greatest or least functions.

SELECT greatest(nvl(col1,default value incase of NULL),nvl(col2,default valu
e incase of NULL));

Renaming tables
To harden the system, Hive data can be stored in HDFS encryption zones. RENAME has been changed to prevent
moving a table outside the same encryption zone or into a no-encryption zone.

Before Upgrade to Cloudera

In CDH and HDP, renaming a managed table moves its HDFS location.

After Upgrade to Cloudera

Renaming a managed table moves its location only if the table is created without a LOCATION clause and is under
its database directory.

Action Required

None

TRUNCATE TABLE on an external table
Hive 3 does not support TRUNCATE TABLE on external tables. Truncating an external table results in an error. You
can truncate an external table if you change your applications to set a table property to purge data.

Before Upgrade to Cloudera

Some legacy versions of Hive supported TRUNCATE TABLE on external tables.

After Upgrade to Cloudera Base on premises

By default, TRUNCATE TABLE is supported only on managed tables. Attempting to truncate an external table
results in the following error:

Error: org.apache.spark.sql.AnalysisException: Operation not allowed: TRUNCA
TE TABLE on external tables

Action Required

Change applications. Do not attempt to run TRUNCATE TABLE on an external table.

Alternatively, change applications to alter a table property to set external.table.purge to true to allow truncation of an
external table:

ALTER TABLE mytable SET TBLPROPERTIES ('external.table.purge'='true');

Migrating Spark Apps

Spark integration with Hive
You need to know a little about Hive Warehouse Connector (HWC) and how to find more information because to
access Hive from Spark, you need to use HWC implicitly or explicitly.

81

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

You can use the Hive Warehouse Connector (HWC) to access Hive managed tables from Spark. HWC is specifically
designed to access managed ACID v2 Hive tables, and supports writing to tables in Parquet, ORC, Avro, or Textfile
formats. HWC is a Spark library/plugin that is launched with the Spark app.

You do not need HWC to read from or write to Hive external tables. Spark uses native Spark to access external tables.

Use the Spark Direct Reader and HWC for ETL jobs. For other jobs, consider using Apache Ranger and the
HiveWarehouseConnector library to provide row and column, fine-grained access to the data.

HWC supports spark-submit and pyspark. The spark thrift server is not supported.

Related Information
Hive Warehouse Connector for accessing Apache Spark data

Identifying and fixing invalid Hive schema versions
As Administrator, after upgrading from Ambari-managed HDP to Cloudera Private Cloud Base, you need to identify
Hive metastore operations that might fail due to Hive schema version incompatibility.

About this task
Incompatibility might exist if the upgrade process failed to make schema updates. You need to turn on the Hive
Metastore Schema validation process for the metastore during the migration of your workloads to CDP. The Hive
metastore captures any schema updates that occur during the upgrade, and displays issues in the Hive metastore logs.
With this information, you can use the Apache Hive Schema tool to fix any problems.

Procedure

1. In Cloudera Manager, click Clusters HIVE Configuration .

2. Check the hive.metastore.server.max.message.size.

3. Set hive.metastore.server.max.message.size to the recommended value: 10% of the value of your Java heap size
for Hive Metastore Server in bytes, but no more than 21478364. Recommended value: 214748364

4. Click Clusters HIVE Configuration , and search for schema.

5. Check Strict Hive Metastore Schema Validation to set hive.metastore.schema.verification to true.

6. Check the Hive metastore logs and set a compatible metastore schema for the current Hive version using the
Apache Hive Schema Tool.

Related Information
Apache Hive Schema Tool

Fixing statistics
Upgrading or migrating from Hive 1 or Hive 2 to Hive 3 might result in missing statistics. In Hive 3, these missing
statistics, when detected by the cost-based optimizer (CBO), could cause datasets to be disregarded. As Data
Engineer, you need to fix these statistics after upgrading.

Procedure

1. Run DESCRIBE FORMATTED <table>, and check the value of numrows.
If the value is 0, you must fix statistics.

82

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://cwiki.apache.org/confluence/display/Hive/Hive+Schema+Tool

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

2. Run ANALYZE on the tables and columns to fix the statistics.

ANALYZE TABLE credit_card_01.cc_acct COMPUTE STATISTICS[FOR COLUMNS];

Converting Hive CLI scripts to Beeline
If you have legacy scripts that run Hive queries from edge nodes using the Hive CLI, you must solve potential
incompatibilities with variable substitution in these scripts. CDP supports Beeline instead of Hive CLI. You can use
Beeline to run legacy scripts with a few caveats.

About this task

In this task, you resolve incompatibilities in legacy Hive CLI scripts and Beeline:

• Configuration variables

• Problem: You cannot refer to configuration parameters in scripts using the hiveconf namespace unless
allowed.

• Solution: You include the parameter in the HiveServer allowlist (whitelist).
• Namespace problems

• Problem: Beeline does not support the system and env namespaces for variables.
• Solution: You remove these namespace references from scripts using a conversion technique described in this

task.

Procedure

1. Create a conversion script named env_to_hivevar.sh that removes env references in your SQL scripts.

#!/usr/bin/env bash

CMD_LINE=""

#Blank conversion of all env scoped values
for I in `env`; do
 CMD_LINE="$CMD_LINE --hivevar env:${I} "
done
echo ${CMD_LINE}

2. On the command line of a node in your cluster, define and export a variable named HIVEVAR, for example, and
set it to run the conversion script.

export HIVEVAR=`./env_to_hivevar.sh`

3. Define and export variables to hold a few variables for testing the conversion.

export LOC_TIME_ZONE="US/EASTERN"
export MY_TEST_VAR="TODAY"

4. On the command line of a cluster node, test the conversion: Execute a command that references HIVEVAR to
parse a SQL statement, remove the incompatible env namespace, and execute the remaining SQL.

hive ${HIVEVAR} -e 'select "${env:LOC_TIME_ZONE}";'

+-------------+
| _c0 |
+-------------+
| US/EASTERN |

83

CDP Private Cloud Migrating Hive Workloads from HDP 2.6.5 after an in-place
upgrade

+-------------+

5. Create a text file named init_var.sql to simulate a legacy script that sets two configuration parameters, one in the
problematic env namespace.

set mylocal.test.var=hello;
set mylocal.test.env.var=${env:MY_TEST_VAR};

6. Include these configuration parameters in the allowlist: In Cloudera Manager, go to Clusters HIVE_ON_TEZ-1
Configuration , and search for hive-site.

7. In HiveServer2 Advanced Configuration Snippet (Safety Valve) for hive-site.xml, add the property key: hive.sec
urity.authorization.sqlstd.confwhitelist.append.

8. Provide the property value, or values, to allowlist, for example: mylocal\..*|junk.

This action appends mylocal.test.var and mylocal.test.env.var parameters to the allowlist.

9. Save configuration changes, and restart any components as required.

10. Run a command that references HIVEVAR to parse a SQL script, removes the incompatible env namespace, and
runs the remaining SQL, including the whitelisted configuration parameters identified by hiveconf:.

hive -i init_var.sql ${HIVEVAR} -e 'select "${hiveconf:mylocal.test.var}
","${hiveconf:mylocal.test.env.var}";'

+--------+--------+
| _c0 | _c1 |
+--------+--------+
| hello | TODAY |
+--------+--------+

Hive unsupported interfaces and features
You need to understand the interfaces that are not supported.

Unsupported Interfaces and features

The following interfaces are not supported in Cloudera Base on premises:

• Druid
• Hcat CLI (however HCatalog is supported)
• Hive CLI (replaced by Beeline)
• Hive View UI feature in Ambari
• Apache Hive Standalone driver
• Renaming Hive databases
• Multiple insert overwrite queries that read data from a source table.
• LLAP
• MapReduce execution engine (replaced by Tez)
• Pig
• S3 for storing tables (available in Cloudera on cloud only)
• Spark execution engine (replaced by Tez)
• Spark thrift server

Spark and Hive tables interoperate using the Hive Warehouse Connector.
• SQL Standard Authorization
• Storage Based Authorization
• Tez View UI feature in Ambari
• WebHCat

84

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

You can use Hue in lieu of Hive View.

Storage Based Authorization

Storage Based Authorization (SBA) is no longer supported in Cloudera. Ranger integration with Hive metastore
provides consistency in Ranger authorization enabled in HiveServer (HS2). SBA did not provide authorization
support for metadata that does not have a file/directory associated with it. Ranger-based authorization has no such
limitation.

Hive-Kudu integration

Cloudera does not support the integration of HiveServer (HS2) with Kudu tables. You cannot run queries against
Kudu tables from HS2.

Partially unsupported interfaces

Apache Hadoop Distributed Copy (DistCP) is not supported for copying Hive ACID tables.

Unsupported Features

Cloudera does not support the following features that were available in HDP and CDH platforms:

• CREATE TABLE that specifies a managed table location

Do not use the LOCATION clause to create a managed table. Hive assigns a default location in the warehouse to
managed tables. That default location is configured in Hive using the hive.metastore.warehouse.dir configuration
property, but can be overridden for the database by setting the CREATE DATABASE MANAGEDLOCATION
parameter.

• CREATE INDEX and related index commands were removed in Hive 3, and consequently are not supported in
Cloudera.

In Cloudera, you use the Hive 3 default ORC columnar file formats to achieve the performance benefits of
indexing. Materialized Views with automatic query rewriting also improves performance. Indexes migrated to
Cloudera are preserved but render any Hive tables with an undroppable index. To drop the index, google the
Known Issue for CDPD-23041.

• Hive metastore (HMS) high availablility (HA) load balancing in CDH

You need to set up HMS HA as described in the documentation.

• Local or Embedded Hive metastore server

Cloudera does not support the use of a local or embedded Hive metastore setup.

Unsupported Connector Use

Cloudera does not support the Sqoop exports using the Hadoop jar command (the Java API) that Teradata documents.
For more information, see Migrating data using Sqoop.

Replicating Hive data from HDP 3 to CDP

You can replicate Hive ACID and external table data from an HDP 3.1.5.6000 cluster to a CDP Private Cloud Base
7.1.6 or higher cluster by applying patches, and then running the REPL DUMP command on the HDP cluster using a
cron script. You run the REPL LOAD command on the CDP Private Cloud Base cluster using the Hive scheduler.

You follow step-by-step instructions to configure the HDP and CDP clusters. Configuration involves a number of
policy-level properties and is mandatory. After replicating data, you follow detailed steps that describe how to verify
the replication.

85

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/migrating-data-into-hive/topics/hive_data_migration.html

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

Note: If you want to use REPL commands to replicate Hive ACID tables between CDP Private Cloud Base
clusters, ensure that your source cluster is on CDP Private Cloud Base 7.1.8 or a higher version.

Replicating Hive data
You need to meet a few prerequisites to perform this type of replication, apply patches, and configure the HDP and
CDP clusters for replication. From example replication commands, you see how to replicate your data. Finally, you
follow a step-by-step verification procedure.

Before you begin

• Ensure that the HDP cluster can write to the CDP cluster.
• Set up a one-way trust between the clusters if they belong to different Kerberos Key Distribution Centers (KDCs).
• To run the commands, log into beeline using kinit.

Procedure

1. Apply patches required on HDP.

2. Apply patches required on CDP.

3. Configure the clusters following step-by-step instructions.

4. Replicate Hive data as shown in example commands for replicating HDP 3 workloads.

5. Verify the Hive data replication.

Configuring the CDP cluster
You need to take advantage of Hive scheduled queries to load replicated workloads from HDP onto CDP using the
REPL LOAD command. In the event of replication process problems, scheduled query metrics help you troubleshoot.

Before you begin
To perform Hive replication of external tables, add the hive user to the supergroup.

Procedure

1. Run a scheduled query on the CDP Private Cloud Base cluster to create a replication policy, using values for
mandatory properties in the Mandatory CDP policy-level properties table in the next topic.

create scheduled query repl_[***replication policy name***’
[***FREQ***] as REPL LOAD [***SOURCE DB NAME***] into [***TARGET DB
NAME***] with [***Configuration parameters in key value pairs
separated by comma***] executed as [***user_name***];

• Ensure that the replication policy name is in repl_[***policy name***] format.

The scheduler is a generic scheduler in Hive and is used for various purposes including replication.
• Make sure to filter the replication-related schedules.

2. Change the replication policy using the Hive statements in Supported Scheduled Query Operations.

Related Information
Supported scheduled query operations

Mandatory CDP policy-level properties
You need to configure mandatory Hive policies on CDP before you load workload replicated data. You learn what
value to set for each property, whether or not you can specify property configuration options in the REPL LOAD
command, and if the property is modifiable with an alter query in the REPL LOAD command.

86

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

The following table lists the properties you must set on the CDP Private Cloud Base cluster before loading your
replicated data onto CDP. The Modifiable column indicates whether or not you can modify the property with an alter
query in the REPL LOAD command.

Table 4: Mandatory Policy-level Properties

Property Description Required Value Modifiable

hive.repl.rootdir Staging location path. Enter the
same path for REPL DUMP and
REPL LOAD.

[***HDFS path***]

Note: Use the same property
value in REPL DUMP and REPL
LOAD.

No

hive.repl.include.external

.tables

Includes external tables for
replication.

true No

hive.repl.dump.metadata

.only.for.external.table

Includes only external table
metadata for replication.

false yes

hive.repl.replica.external.

table.base.dir

Fully qualified base directory
on the target warehouse to store
external tables. The directory
path is prefixed to the source
external table path on the target
cluster. Enter the same path for
REPL DUMP and REPL LOAD
commands.

[***HDFS path***]

Note: Use the same property
value in REPL DUMP and REPL
LOAD commands.

yes

hive.repl.ha.datapath.re

place.remote.nameservi

ce

Set to true when the following are
true:

- HDFS is HA-enabled

- Both the source and target
clusters are configured with the
same nameservice name.

See Description before you
configure this option.

Yes

hive.repl.ha.datapath.re

place.remote.nameservi

ce.name

Provides a reference to the
nameservice on HDP when HDFS
is HA-enabled and both HDP and
CDP clusters are configured with
the same nameservice name.

[**remote nameservice

name**]

Note: Use the same parameter
value in REPL DUMP and REPL
LOAD commands.

Yes

The property values of the nameservice.name and remote.nameservice must be different. For example, if the
clusters use the nameservice name ns, then use a different property value. For example, ‘hive.repl.ha.datapath.replac
e.remote.nameservice.name’ = ‘nsRemote’.

Important: Do not configure hive.repl.ha.datapath.replace.remote.nameservice and hive.repl.ha.datapat
h.replace.remote.nameservice.name configuration parameters if the clusters are non-HA or have different
nameservice names.

Optional CDP policy-level properties
You must include the following list of optional policy-level configuration properties in REPL LOAD command on
the CDP Private Cloud Base cluster. Put the property after the WITH clause of the command.

The Modifiable column indicates whether or not you can modify the property with an alter query in the REPL LOAD
command.

87

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

Table 5:

Property Description Default Value Modifiable

distcp.options.pugbx Enter the options based on
whether you want to preserve
owner or user permissions, group
permissions, and HDFS ACLs in
source and target clusters during
replication.

Note: You must have superuser

privileges to preserve the user and
group permissions, and HDFS
ACLs.

N/A Yes

hive.repl.retry.initial.dela

y

First retry delay in seconds. 60 seconds yes

hive.repl.retry.backoff.co

efficient

Exponential Delay between
retries. The value of (Previous
Delay) * (Backoff Coefficient)
determines the next retry interval.

1.2 seconds Yes

hive.repl.retry.jitter A Random jitter to be applied to
avoid all retries happening at the
same time.

30 seconds Yes

hive.repl.retry.max.delay.

between.retries

Maximum allowed retry delay
in seconds after including the
exponential backoff algorithm.
If this limit is reached, retry will
continue with this duration.

60 minutes Yes

hive.repl.retry.total.durati

on

Total allowed retry duration in
seconds inclusive of all retries.
After this is duration is exceeded,
the policy instance is marked
as failed and will need manual
intervention to restart.

24 hours Yes

Supported scheduled query operations
When you configure the CDP cluster, you can change the replication policy using the Hive scheduled queries that
CDP supports.

CDP supports the following scheduled queries that you use to change the scheduled query that replicates the HDP
workload to CDP.

• Modify the replication policy schedule:

alter scheduled query repl_policyname cron '2 2 * * *';

• Run the replication policy:

alter scheduled query repl_policyname execute;

• Delete the replication policy:

drop scheduled query repl_policyname;

• Pause running the replication policy job:

 alter scheduled query repl_policyname disabled;

88

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

• Resume running the replication policy job:

alter scheduled query repl_policyname enabled;

• List scheduled replication policies:

select * from sys.scheduled_queries;

• List all scheduled runs for all policies:

select * from sys.scheduled_executions;

• Track the error for the last job run for a replication policy:

select s.error_message from sys.scheduled_executions s join sys.schedule
d_queries t where s.scheduled_query_id = 7
t.scheduled_query_id and t.schedule_name = '<policy-name>' order by s.sch
eduled_execution_id limit 1;

• Get the metrics from the Hive scheduler for a replication policy:

select * from sys.replication_metrics where policy_name=repl<policy name>
 order by scheduled_execution_id desc limit 1;

When you get metrics from the Hive scheduler, in case of irrecoverable errors, the status shows FAILED_ADMIN
and the error log path appears in the metrics. Manually check the error and delete the error file to resume replication
after you fix the error. For more information, see Troubleshooting.

The following sample snippet shows the Hive scheduler metrics on the target CDP cluster:

+---+-----------------------------
-----+--+-----------------------------
-----------------------+--
+
| replication_metrics.scheduled_execution_id | replication_metrics.policy
_name | replication_metrics.dump_execution_id |replication_metrics.metadat
a |replication_metrics.progress
|
+---+----------------------------
------+--+----------------------------
------------------------+---
-+
| 2380 | repl_db1
 | 0 |{"dbName":"db1_r","replica
tionType":"BOOTSTRAP","stagingDir":"hdfs://ns1/
user/hive/replDir/d1/ZGIx/fddc6e66-4ec4-431b-92ab-826c94bba5/hive","lastRepl
Id":12082}

 |{"status":"SUCCESS","stages":[{"name":"REPL_LOAD",
"status":"SUCCESS","startTime":1617669672695,"endTime":1617669675068,"met
rics":[{"name":"FUNCTIONS","currentCount":0,"totalCount":0},{"name":"TABLES"
,"currentCount":2,"totalCount":2}],"errorLogPath":null}]} |

Related Information
Configuring the CDP cluster

Configuring the HDP cluster
You need to configure the HDP cluster before you dump workload data that you want to replicate on CDP.

89

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

Before you begin
Prepare a cron script to set policies for chained REPL DUMP commands and to control execution, for example to run
at a certain time.

Procedure

1. In new and existing databases, include the repl.source.for property in the source database dbproperties file.

Set the repl.source.for property value using the following format:

'repl.source.for' = [****policy1 name***, ****policy2 name***, ****policy3
 name***]

For example, to create a new source database for policies named 1, 2, and 3, configure the source database
properties file as follows:

‘repl.source.for' = '1, 2, 3'

For example, to configure an existing source database named testdb, run the following command:

ALTER DATABASE testdb SET
DBPROPERTIES('repl.source.for'=[****policy1 name, policy2 name,
policy3 name***]');

2. On the HDP cluster, configure the mandatory HDP cluster configuration properties listed in the next topic.

3. Run the REPL DUMP command along the mandatory policy-level configuration parameters using a cron script.

Use the following command syntax:

[***cron syntax for regular intervals***] beeline -u jdbc:hive2://[***so
urce database***] hive
-e"repl dump [***source database***] with [***mandatory policy-level conf
iguration
parameters separated by comma***]

See the Cron Expression Generator & Explainer website.

Related Information
Cron Expression Generator & Explainer

Mandatory HDP cluster configuration properties
You must set the mandatory cluster-level properties on the HDP cluster before replicating data using the REPL
command. You need to set the values required for a successful replication.

Table 6:

Property Description Required Value

hive.repl.cm.enabled Enables ChangeManager so that the deleted
files are saved in the cmrootdir directory.

true

hive.repl.cmroot Root directory (cmrootdir directory) for
ChangeManager which is used for deleted
files.

[***HDFS path***]

hive.repl.cm.retain Time in days to retain the deleted files in
cmrootdir directory.

10 days

hive.metastore.event.db.listener. timetolive Time in days after which the events are
removed from the database listener queue.

10 days

90

https://www.freeformatter.com/cron-expression-generator-quartz.html

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

Mandatory HDP policy-level properties
You must set a number of policy-level properties in REPL DUMP command on the HDP cluster. Put the property
after the WITH clause of the command.

Table 7:

Property Description Required Value

hive.repl.dump.version REPL DUMP format version.

- Use 2 for HDP-to-CDP Private Cloud Base
replication.

- Use 1 for HDP to HDP replication.

2

hive.repl.rootdir Staging location path.

Enter the same path for REPL DUMP and
REPL LOAD commands.

[***HDFS path***]

Note: Use the same parameter value in REPL
DUMP and REPL LOAD commands.

hive.repl.include.external.tables Include external tables for replication. true

hive.repl.dump.metadata.only.for .external.table Includes only external table metadata for
replication.

false

hive.repl.replica.external.table.b ase.dir Fully qualified base directory on the target
warehouse to store external tables. The
directory path is prefixed to the source
external table path on the target cluster.

[***HDFS path***]

Note: Use the same parameter value in REPL
DUMP and REPL LOAD commands.

hive.repl.ha.datapath.replace.re
mote.nameservice

Set to true when the following are true:

- HDFS is HA-enabled

- Both the source and target clusters are
configured with the same nameservice name.

See Description before you configure this
option.

hive.repl.ha.datapath.replace.re
mote.nameservice.name

Provides a reference to the nameservice on
the remote (target) cluster when HDFS is HA-
enabled and both source and target clusters are
configured with the same nameservice name.

[**remote nameservice name**]

Note: Use the same parameter value in
REPL,DUMP and REPL LOAD commands.

hive.repl.ha.datapath.replace.re mote.nameservice.name value requirements

Ensure the value of hive.repl.ha.datapath.replace.re mote.nameservice.name is different from the nameservice name
on the local (source) cluster. For example, if the clusters use the nameservice name ns, then use a different property
value. For example, ‘hive.repl.ha.datapath.replace.remote.nameserv ice.name’ = ‘nsRemote’.

Important: Do not configure hive.repl.ha.datapath.replace.remote.nameservice and hive.repl.ha.datapath.re
place.remote.nameservice.name properties if the clusters are non-HA or have different nameservice names.

Optional HDP policy-level properties
You must include optional policy-level configuration properties in REPL DUMP command on the HDP cluster. You
put the property after the WITH clause of the command.

91

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

Table 8:

Property Description Default Value

distcp.options.pugbx Enter the options based on whether you want
to preserve owner or user permissions, group
permissions, and HDFS ACLs in source and
target clusters during replication.

Note: You must have superuser privileges to
preserve the user and group permissions, and
HDFS ACLs.

N/A

hive.repl.retry.initial.delay First retry delay in seconds. 60 seconds

hive.repl.retry.backoff.coefficient Exponential Delay between retries. The value
of (Previous Delay) * (Backoff Coefficient)
determines the next retry interval.

1.2 seconds

hive.repl.retry.jitter A Random jitter to be applied to avoid all
retries happening at the same time.

30 seconds

Configuring wire-encrypted clusters
If CDP clusters are wire-encrypted (TLS-enabled), you need to know how to configure the clusters for running the
Apache Hadoop DistCp (Distributed Copy) command.

About this task
To run DistCp on a wire-encrypted (TLS-enabled) multi-clusterenvironment, perform the following steps to export
the Ranger KMS certificate from the RangerKMS host of the HDP cluster to the Hadoop clienttruststore of CDP
Private Cloud Base cluster.

Procedure

1. Run the following CLI command to export the certificatefrom Ranger KMS keystore file on KMShosts of both the
clusters.

cd [***kms_key_store_location***];keytool -export-alias kms_cert_[***hos
t_name***]-keystore [***kms_keystore_file_path***] -rfc -filekms_cert_[*
host_name*] -storepass[***kms_keystore_password***]

Theranger.https.attrib.keystore.fileparameterin the KMS configuration file containsthe location of the KMS
keystore.

2. Copy all the certificates generated for KMS in theHDP cluster to the client key location on allthe hosts of the CDP
Private Cloud Base cluster. Similarly,copy all the certificates generated forKMS in the CDP Private Cloud Base
cluster to the clientkey location on all the hosts of the HDPcluster.

3. Run the following CLI command to import all the KMScertificates in the HDP cluster to theHadoop client
truststore on all the hosts of CDP PrivateCloud Base cluster.

cd [***client_hadoop_key_location***];keytool import-noprompt -aliaskms_
cert_[***host_name***] -file kms_cert_[***host_name***]-keystore[***trus
tstore_file_path***] -storepass [***truststore_password***]

4. Similarly, import all the KMS certificates in theCDP Private Cloud Base cluster to the Hadoopclient truststore on
all the hosts of the HDP cluster.

5. Restart the HDFS service, YARN, MapReduce, and RangerKMS on both the clusters.

Related Information
SSL configuration for Distcp across the cluster in wire encrypted Multicluster Envrionment

92

https://community.cloudera.com/t5/Community-Articles/SSL-configuration-for-Distcp-accross-the-cluster-in-wire/ta-p/248519

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

Example commands for replicating HDP 3 workloads
To perform Hive replication from an HDP 3.1.5.6000 cluster to a CDP Private Cloud Base 7.1.6 or later cluster, you
need to know how to run the REPL DUMP on the HDP cluster and REPL LOAD on the CDP Private Cloud Base
cluster. Examples of valid commands helps you create counterparts to replicate your workloads to CDP. You learn
how to replicate data between HA clusters.

Example Hive commands for replicating managed tables

To replicate managed tables, use the REPL commands as shown in these examples.

1. On HDP, dump a workload of managed tables.

repl dump src with (
'hive.repl.dump.version'= '2',
'hive.repl.rootdir'= 'hdfs://<host>:<port>/user/hive/replDir/d1'
);

2. On CDP, load the workload of managed tables.

repl load src into tgt with (
'hive.repl.rootdir'= 'hdfs://<host>:<port>/user/hive/replDir/d1'
);

Example Hive commands for replicating external tables

Prerequisite: To perform Hive replication of external tables, add the hive user to the supergroup.

1. On HDP, dump a workload of external tables.

repl dump src with (
'hive.repl.dump.version'= '2',
'hive.repl.rootdir'= 'hdfs://<host>:<port>/user/hive/replDir/d1',
'hive.repl.include.external.tables'= 'true',
'hive.repl.dump.metadata.only.for.external.table'= 'false',
'hive.repl.replica.external.table.base.dir'=
'hdfs://<replica-host>:<port>/user/hive/externalDir/d1'
);

2. On CDP, load the external tables.

repl load src into tgt with (
'hive.repl.dump.version'= '2',
'hive.repl.rootdir'= 'hdfs://<host>:<port>/user/hive/replDir/d1',
'hive.repl.include.external.tables'= 'true',
'hive.repl.dump.metadata.only.for.external.table'= 'false',
'hive.repl.replica.external.table.base.dir'=
'hdfs://<replica-host>:<port>/user/hive/externalDir/d1'
);

Example Hive commands for replicating data between HA clusters

To perform Hive replication between HA clusters (HDP and CDP Private Cloud Base clusters), you must provide
HDFS-related HA configuration properties for HDP and CDP clusters in the REPL DUMP and REPL LOAD
commands. The following examples show Hive replication from an HDP cluster to a CDP Private Cloud Base cluster
that are HA-enabled.

1. On HDP, dump a workload.

repl dump src with (

93

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

 'hive.repl.dump.version'= '2',
'hive.repl.rootdir'= 'hdfs://ns1/user/hive/replDir/d1',
'hive.repl.dump.metadata.only.for.external.table'= 'false',
'hive.repl.replica.external.table.base.dir'=
 'hdfs://ns1/user/hive/externalDir/d1',
'hive.repl.include.external.tables'= 'true',
 'dfs.nameservices'= 'mycluster,ns1',
'mapreduce.job.hdfs-servers.token-renewal.exclude'= 'ns1',
'dfs.ha.automatic-failover.enabled'= 'true',
'dfs.ha.namenodes.mycluster'= 'nn1,nn2',
'dfs.namenode.rpc-address.mycluster.nn1'=
 'ctr-1617214704777-622-01-007.h.site:8020',
'dfs.namenode.rpc-address.mycluster.nn2'=
 'ctr-1617214704777-622-01-004.h.site:8020',
'dfs.namenode.http-address.mycluster.nn1'=
 'ctr-1617214704777-622-007.h.site:20070',
'dfs.namenode.http-address.mycluster.nn2'=
 'ctr-1617214704777-622-01-004.h.site:20070',
'dfs.namenode.https-address.mycluster.nn1'=
 'ctr-1617214704777-622-01-007.h.site:20470',
'dfs.namenode.https-address.mycluster.nn2'=
 'ctr-1617214704777-622-01-004.h.site:20470',
'dfs.client.failover.proxy.provider.mycluster'=
 'org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxy
Provider',
'dfs.ha.automatic-failover.enabled.ns1'= 'true',
'dfs.ha.namenodes.ns1'= 'namenode1546333583,namenode1546336357',
'dfs.namenode.rpc-address.ns1.namenode1546333583'='sar-uk-1.sar-uk.root
.h.site:8020',
'dfs.namenode.rpc-address.ns1.namenode1546336357'='sar-uk-2.sar-uk.root.h
.site:8020',
'dfs.namenode.http-address.ns1.namenode1546333583'='sar-uk-1.sar-uk.roo
t.h.site:20101',
'dfs.namenode.http-address.ns1.namenode1546336357'='sar-uk-2.sar-uk.roo
t.h.site:20101',
'dfs.namenode.https-address.ns1.namenode1546336357'='sar-uk-1.sar-uk.ro
ot.h.site:20102',
'dfs.namenode.https-address.ns1.namenode1546333583'='sar-uk-1.sar-uk.root.
h.site:20102',
'dfs.client.failover.proxy.provider.ns1'=
 'org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProx
yProvider'
);

2. On CDP, load the workload.

repl load src into tgt with (
'hive.repl.rootdir'= 'hdfs://ns1/user/hive/replDir/d1',
'hive.repl.dump.metadata.only.for.external.table'= 'false',
'hive.repl.replica.external.table.base.dir'=
 'hdfs://ns1/user/hive/externalDir/d1',
'hive.repl.include.external.tables'= 'true',
 'dfs.nameservices'= 'mycluster,ns1',
'mapreduce.job.hdfs-servers.token-renewal.exclude'= 'mycluster',
'dfs.ha.automatic-failover.enabled'= 'true',
'dfs.ha.namenodes.mycluster'= 'nn1,nn2',
'dfs.namenode.rpc-address.mycluster.nn1'=
 'ctr-1617214704777-622-01-007.h.site:8020',
'dfs.namenode.rpc-address.mycluster.nn2'=
 ‘ctr-1617214704777-622-01-004.h.site:8020',
'dfs.namenode.http-address.mycluster.nn1'=
 'ctr-1617214704777-622-01-007.h.site:20070',
'dfs.namenode.http-address.mycluster.nn2'=
 'ctr-1617214704777-622-01-004.h.site:20070',

94

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

'dfs.namenode.https-address.mycluster.nn1'=
 'ctr-1617214704777-622-01-007.h.site:20470',
'dfs.namenode.https-address.mycluster.nn2'=
 'ctr-1617214704777-622-01-004.h.site:20470',
'dfs.client.failover.proxy.provider.mycluster'=
 'org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProx
yProvider',
'dfs.ha.automatic-failover.enabled.ns1'= 'true',
'dfs.ha.namenodes.ns1'= 'namenode1546333583,namenode1546336357',
'dfs.namenode.rpc-address.ns1.namenode1546333583'='sar-uk-1.sar-uk.root.h.
site:8020',
'dfs.namenode.rpc-address.ns1.namenode1546336357'='sar-uk-2.sar-uk.root.
h.site:8020',
'dfs.namenode.http-address.ns1.namenode1546333583'=
 'sar-uk-1.sar-uk.root.h.site:20101',
'dfs.namenode.http-address.ns1.namenode1546336357'='sar-uk-2.sar-uk.roo
t.h.site:20101',
'dfs.namenode.https-address.ns1.namenode1546336357'='sar-uk-2.sar-uk.ro
ot.h.site:20102',
'dfs.namenode.https-address.ns1.namenode1546333583'='sar-uk-1.sar-uk.root.
h.site:20102',
'dfs.client.failover.proxy.provider.ns1'=
 'org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProx
yProvider'
);

Troubleshooting Hive replication using REPL
You need to know how to recover from the FAILED_ADMIN state that stops the replication process.

Problem: A non-recoverable error appears for a replication job and the status says FAILED_ADMIN. How do you
recover a schedule from the FAILED_ADMIN state?

Solution: Perform the following steps to recover a replication schedule from this state:

1. Navigate to the error log path.
2. Search for the file _non_recoverable.
3. Open the file, and look for information about an error that caused the replication failed.
4. Fix the error.
5. Delete the _non_recoverable file.

The_non_recoverable file from the last replication command execution must be deleted; otherwise your
replication attempt will malfunction.

Problem: Notification events are missing in the metastore.

Solution: If notification events are not present in the metastore during replication, the replication might be in a
FAILED_ADMIN status. When this occurs, notifications are deleted in the metastore. In this case, the workaround is
to start a fresh bootstrap phase of replication, as follows:

1. Drop the target database using beeline.
2. Remove the dump directory on HDFS for the required policy. The path of _non_recoverable error file path has the

dump directory path.

The replication continues where it stopped.

Repl Command Known Issues
You need to know the about REPL command issues that you might encounter when replicating Hive data from HDP
to CDP Private Cloud Base in CDP 7.1.6 and earlier.

95

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

• HIVE-24896

Incremental replication fails when a managed table is dropped and an external table is created with the same
name.

• HIVE-24933

Incremental replication fails when an external table is dropped and a managed table is created with the same
name.

• HIVE-24818

Replication fails when there are partitioned views.
• HIVE-24676

Show locks call failing for PostgresSQL database if the txnId filter is passed.
• HIVE-24698

The ACLs are not synchronized for external tables automatically.
• HIVE-24878

Function replication is not initiated if the hive.repl.run.data.copy.tasks.on.target policy-level configuration
parameter is set to false.

Workaround: By default, the hive.repl.run.data.copy.tasks.on.target policy-level configuration parameter is set to
true. Before you initiate function replication, ensure that this parameter is set to true.

• CDPD-23188

Replication of Hive data fails when the external tables in the HDP cluster are replicated to a managed warehouse
location in the CDP Private Cloud Base cluster.

This issue might appear when one of the following condition is true:

• The external tables in HDP are in the managed warehouse location but the
hive.repl.replica.external.table.base.dir parameter is set to “/”.

• The hive.repl.replica.external.table.base.dir parameter is configured with the managed warehouse location in
the CDP Private Cloud Base cluster.

The Managed warehouse location is defined by the hive.metastore.warehouse.dir configuration parameter.

Workaround: Perform the following steps to resolve the issue:

a. Configure the hive.repl.replica.external.table.base.dir parameter to a value other than “/”. This ensures that the
external tables are not replicated to the managed warehouse location on target.

b. Configure the hive.repl.replica.external.table.base.dir parameter with a path other than the managed warehouse
location in CDP Private Cloud Base cluster.

Patches Required on HDP
Before replicating HDP 3.1.5 databases to CDP 7.1.6, you apply JIRAs on HDP-3.1.5.6000 on top of HDP-3.1.5.0. A
list of these JIRAs includes links to more information about each patch.

• CDPD-27374: HIVE-20823: Make Compactor run in a transaction.
• HOTFIX-3686 BUG-124830 HIVE-21036 extend OpenTxnRequest with transaction type
• HOTFIX-3686 BUG-124830 HIVE-22367: Transaction type not retrieved from OpenTxnRequest
• HOTFIX-3686 BUG-124830 HIVE-21114: Create read-only transactions
• HOTFIX-3686 BUG-124830 HIVE-22327: Repl: Ignore read-only transactions in notification log
• HOTFIX-3685BUG-124830 HIVE-23340 TxnHandler cleanup
• HOTFIX-3686 BUG-124830 HIVE-23560: Optimize bootstrap dump to abort only write Transactions
• HOTFIX-3686 BUG-124830 HIVE-24095:Load partitions in parallel for external tables in the bootstrap phase
• HOTFIX-3686 BUG-124830 HIVE-24328: Run distcp in parallel for all file entries in repl load.

96

https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

• HOTFIX-3686 BUG-124830 HIVE-22290: ObjectStore.cleanWriteNotificationEvents and
ObjectStore.cleanupEvents OutOfMemory on large number of pending events

• HOTFIX-3686 BUG-124830 HIVE-24197:Check for write transactions for the db under replication at a frequent
interval

• HOTFIX-3686 BUG-124830 HIVE-24109: Load partitions in batches for managed tables in the bootstrap phase
• HOTFIX-3686 BUG-124830 HIVE-24363: Current order of transactional event listeners is prone to deadlock in

backend DB connections
• HOTFIX-3686 BUG-124830 HIVE-23851: MSCK REPAIR Command With Partition Filtering Fails While

Dropping Partitions (#1271)
• ENGESC-363: Backport HIVE-22736: Support multiple encryption zones in hive replication
• ENGESC-363 : HIVE-22890 : Fix Repl load failure if table name contains _function
• HIVE-22844: Validate cm configs, add retries in fs apis for cm.
• CDPD-20160: Add new repl dump format support on HDP
• HIVE-24597. Replication with timestamp type partition failing in HA case with same NS.
• HIVE-24432: Delete Notification Events in Batches.
• HIVE-24676 : Show locks call failing for postgres RDBMS if the txnId filter is passed
• BUG-125039 : HL_TXNID column is lower case in HDP-3.1.5
• CDPD-20160: Add new repl dump format support on HDP - incremental
• CDPD-21491: HIVE-24675: Handle external table replication for HA with same NS and lazy copy
• HIVE-24127:Dump events from default catalog only
• BUG-125093: Test Failures in DBNotification Listener and ACID
• BUG-124718 HIVE-24127:Dump events from default catalog only
• CDPD-23113: HDP_TO_CDP: Repl_dump is failing fo Staging_dir=src_cluster
• CDPD-23204: incremental function replication failing for data copy on source
• CDPD-23206: HIVE-24856: Skip functions created without 'using' clause during incremental replication
• HIVE-24836. Add replication policy name and schedule id as a job name for all the distcp jobs
• HIVE-24895. Add a DataCopyEnd stage in ReplStateLogTask for external table replication. Partial Backport only

contains per task logging
• HIVE-24909: Skip the repl events from getting logged in notification log
• HIVE-25272: Read transactions are getting logged in the notification log

Patches required on CDP
Before replicating HDP 3.1.5 workloads to CDP 7.1.6, you apply several patches to the CDP cluster.

• HIVE-25002 Modify condition for target of replication in statsUpdaterThread and PartitionManagementTask.
• HIVE-24881 Abort old replication transactions.
• HIVE-25218 External table verification tool.

Verifying the Hive data replication from HDP 3.1.5 to 7.1.6
After replicating Hive databases from HDP 3.1.5 (with patches) to CDP 7.1.6 (with patches) you need to verify
that the replication succeeded. After verification that databases on both clusters are in sync, you can stop running
workloads on the HDP cluster and restart workloads on the CDP cluster.

About this task
To verify the replication, follow steps to stop ETL jobs and set up Ranger policies on HDP. Disable HDP background
threads, and get an event marker for validation later. Finally, you validate the replication, or handle possible
replication failures. The following diagram shows the replication and verification process.

97

https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://jira.cloudera.com/browse/HOTFIX-3686
https://issues.apache.org/jira/browse/HIVE-22736
https://issues.apache.org/jira/browse/HIVE-22890
https://issues.apache.org/jira/browse/HIVE-22844
https://jira.cloudera.com/browse/CDPD-20160
https://issues.apache.org/jira/browse/HIVE-24597
https://issues.apache.org/jira/browse/HIVE-24432
https://issues.apache.org/jira/browse/HIVE-24676
https://jira.cloudera.com/browse/BUG-125039
https://jira.cloudera.com/browse/CDPD-20160
https://jira.cloudera.com/browse/CDPD-21491
https://issues.apache.org/jira/browse/HIVE-24127
https://jira.cloudera.com/browse/BUG-125093
https://jira.cloudera.com/browse/BUG-124718
https://jira.cloudera.com/browse/CDPD-23113
https://jira.cloudera.com/browse/CDPD-23204
https://jira.cloudera.com/browse/CDPD-23206
https://issues.apache.org/jira/browse/HIVE-24836
https://issues.apache.org/jira/browse/HIVE-24895
https://issues.apache.org/jira/browse/HIVE-24909
https://issues.apache.org/jira/browse/HIVE-25272

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

98

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

Setting up the HDP cluster
You set up the HDP cluster after replicating one or more databases before you can verify replication. Set up requires
stopping jobs.

About this task
Of course, before you can verify a replication, you must have completed one. The first cycle in replicating data is
called the bootstrap, and the following cycles are called incremental replications. For each database, a completed
replication consists of one bootstrap and at least one incremental replication cycle.

Before you begin

• Run at least one incremental replication for a databases before attempting verification.
• In the CDP cluster, find the dump directory path using the following query:

select * from sys.replication_metrics
where policy_name=‘<policy name>’
order by scheduled_execution_id desc limit 1;

• Find and copy the external table paths listed in the CDP dump directory path in _file_list_external file. You will
use these paths to set up Ranger policies in Ambari.

Procedure

1. On the HDP source cluster, stop all ETL jobs.

99

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

2. In Ambari Ranger Admin Service Manager Hive policies , add a Deny policy (no writes) for all users including
‘hive’ on all databases: Database *, Table *, Hive column *

You need only one policy to deny any writes to managed tables or any access to any external tables

3. In Ambari Ranger Admin Service Manager HDFS policies , add a Ranger Deny policy for all external table paths.

100

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

4. In Resource Path, paste the external table paths you copied from in the CDP dump directory path in the
_file_list_external file.

You can add single or multiple policies for all the external table paths in all the databases.

For example:

5. Disable the StatsUpdaterThread background thread by configuring the hive.metastore.stats.auto.analyze property
to none.

6. Disable the PartitionManagementTask background thread by configuring the
metastore.partition.management.database.pattern property to ^*.

Verifying replication
To verify the replication, you get a checkpoint event id on the HDP cluster and the last event id. Based on your
comparison of the ids, you complete the verification, repeat the verification, or re-replicate the data.

Before you begin
You have run the replication policies, and think you have replicated all databases.

Procedure

1. On the HDP cluster backend RDBMS for Hive metastore (HMS), run a query to get a checkpoint event id.

select NEXT_EVENT_ID - 1 as last_event_id from NOTIFICATION_SEQUENCE;

Output looks something like this:

 You use the HDP
last event id, 582 in this example, as a checkpoint id later.

101

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

2. On the CDP cluster, run the following query to get the last event id for each database replication.

select name as database_name, param_value as last_event_id
 from sys.dbs join sys.database_params on dbs
.db_id = database_params.db_id
 where param_key='repl.last.id'

For example, as root you invoke Hive with the Hive 3-supported option -e, and enclose the query exactly as
shown above in quotation marks.

Output looks something like this:

3. Check the last event ID that appears in the output.

• If the last event ID equals the HDP checkpoint id, the replication process succeeded for the database. Go to the
next step in this procedure.

• If the last event id is greater than the checkpoint id, verification might be incomplete. Proceed to handling a
failed verification.

• If the last event id is less than the checkpoint id, the replication is still in progress. Continue the replication for
that database until the checkpoint id is reached, and reverify.

4. On the HDP cluster backend RDBMS for Hive metastore (HMS), check that the checkpoint id has not changed
since the last time you recorded it. For example

select NEXT_EVENT_ID - 1 as last_event_id from NOTIFICATION_SEQUENCE;

Output looks something like this:

5. Based on your comparison of the last_event_id and the checkpoint ID, proceed in one of the following ways:

• If the HDP last_event_id does not match the checkpoint id you recorded, go to the next topic, "Handling a
failed verification";

• If the HDP last_event_id does match the checkpoint id, proceed to the next step.

6. Repeat these steps to verify the replication of each database in the workload, and then validate external table
replication.

Handing a failed verification
Although you stopped ETL jobs and set Ranger policies to prevent writes to databases, a database write still might
occur. This causes a verification failure. You need to find out if such a write caused the failure.

About this task

102

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

Before you begin

• You completed the replication of Hive data from HDP to CDP.
• The last event id in the output is at least the checkpoint id for all databases, but does not match the checkpoint id.
• You noted the HDP notification event id, which you use later as a checkpoint id.

Procedure

1. On the backend RDBMS of the HDP cluster, run a query to determine if any writes occurred during replication.

select * from NOTIFICATION_LOG where event_id > <HDP notification event id
 > and event_type = 'COMMIT_TXN';

This query gets all commit transaction (TXN) events after the HDP checkpoint event-id.
If there are no commit events, the output looks something like this:

If there are no commit events, assume all valid writes are replicated. Skip the rest of the steps. The migration is
done.

If there are commit events, continue to the next step.

2. Run a query to get information about the writes.

select event_type,db_name, count(*) from NOTIFICATION_LOG
where event_id > <HDP notification event id >
group by db_name,event_type order by db_name;

The output might look something like this:

3. Identify clients who wrote to the database, and stop further attempts.

You can use Ranger audits, if enabled, to identify such clients as described in Managing Auditing.

4. Repeat the procedure "Verifying replication".

Validating external table replication
You need to validate external table replication before migration to CDP. You run the external table validation
commands on the CDP cluster.

About this task
You run the external table validation commands using the command syntax and options below:

Command Syntax

hive --replMigration -dumpFilePath <path to external table info file> \
[-dirLevelCheck] [-fileLevelCheck] [-verifyOpenFiles] [-verifyChecksum] [-f
ilters] \
[-conf] [-queueSize] [-numThreads]

Options

103

CDP Private Cloud Replicating Hive data from HDP 3 to CDP

• -dumpFilePath: The fully qualified path to the external table info file.
• -dirLevelCheck: Validate at directory level.
• -fileLevelCheck: Validate at file level.
• -verifyOpenFiles: Validate there are no open files on the source path. Requires superuser privileges.
• -verifyChecksum: Whether the checksum needs to be validated for each file. Cannot be used with -dirLevelCheck.

Will fail if the source and target are in different encryption zones or use different checksum algorithms.
• -filters: Comma separated list of filters, cannot be used along with -dirLevelCheck.
• -conf: Semi-Colon separated list of additional configurations in key1=value1;key2=value2 format.
• -queueSize: Queue size for the thread pool executor for table level validation. Default: 200
• -numThreads: Number of threads for thread pool executor for table level validation. Default: 10
• -checksumQueueSize: Queue size for the thread pool executor for checksum computation. Default: 200
• -checksumNumThreads: Number of threads for thread pool executor for checksum computation. Default:5

Running the external table validation commands can take a significant amount of time, and writes to the HDP
database can occur. You need to check the checkpoint ID again after validating external table replication to determine
if any writes did indeed happen.

To validate external table replication, perform the following steps:

Procedure

1. In CDP, run the external table validation commands as described above.

2. If validation is successful, proceed to the next step; otherwise, complete the replication.

External table validation fails if external data has not been fully replicated; another replication and verification
cycle is required to sync the data.

3. On the HDP cluster backend RDBMS for Hive metastore (HMS), check that the checkpoint id has not changed
since the last time you recorded it. For example:

select NEXT_EVENT_ID - 1 as last_event_id from NOTIFICATION_SEQUENCE;

Output looks something like this:

4. Based on your comparison of the last_event_id and the checkpoint ID, proceed in one of the following ways:

• If the HDP last_event_id does not match the checkpoint id you recorded, handle a failed verification.
• If the HDP last_event_id does match the checkpoint id, the validation is successful. Migrate users to CDP and

enable background threads. You are done.

Enabling background threads after migration
Before replication, you disabled background threads from running on databases. After migration, you need to enable
background threads to run.

Procedure

1. In the CDP cluster, run a query to enable background threads to run on a replicated database.

alter database <dbName> set dbproperties(‘repl.target.for’=’’)

2. Repeat the last step on each replicated database to enable background threads to run.

You can now stop using the HDP cluster and start working on the CDP cluster.

104

CDP Private Cloud Migration paths from HDP 3 to CDP for LLAP users

Migration paths from HDP 3 to CDP for LLAP users

If you are running your Hive HDP 3.x workloads using LLAP (low-latency analytical processing), you need to
decide on the best migration path to CDP without compromising on the performance offered by LLAP. Migration
recommendations depend on a number of factors, such as your workload type and whether you have Hive or Spark
users.

Migration paths for Hive users
If you are on HDP and executing Hive workloads in Hive LLAP mode and want to upgrade to CDP, you can follow
the migration path that matches your use case.

Using LLAP is recommended for running complex ETL jobs that are unpredictable. LLAP is offered as part of
Cloudera Data Warehouse (CDW) and is not available in CDP Public Cloud (Data Hub) and Cloudera Private Cloud
Base. Using Hive on Tez (no LLAP) is recommended for running jobs that are scheduled and predictable. Hive on
Tez is supported on CDP Public Cloud and Cloudera Private Cloud Base.

The following migration paths are recommended based on how predictable your jobs are and your workload type:

• Migrate to CDP Public Cloud (Data Hub) or Cloudera Private Cloud Base — If your jobs are scheduled and
predictable.

• Migrate to Cloudera Data Warehouse (CDW) — If your jobs are unpredictable and if they could increase demand
on compute resources.

The following diagram shows these recommended paths:

105

CDP Private Cloud Migration paths from HDP 3 to CDP for LLAP users

Migration to Cloudera Private Cloud Base or CDP Public Cloud
If your Hive jobs are scheduled, or otherwise considered predictable, consider migrating to Cloudera Private Cloud
Base or CDP Public Cloud and running your Hive workloads on Hive on Tez.

You learn why you should consider the predictability of your jobs when choosing a migration path from HDP 3 to
CDP. If you were using LLAP on HDP, a path to CDP can offer equivalent performance and might make sense cost-
wise.

LLAP is not supported in Cloudera Private Cloud Base and CDP Public Cloud, but Hive-on-Tez performs well for
jobs that are not subjected to unexpected big spikes in demand that would require elasticity, such as rapid service
scaling. Predictable jobs do not require the immediate deployment of extra resources to respond to unexpected traffic
to your cluster. You do not need to shut down resources when traffic drops suddenly.

Related Information
Apache Tez execution engine for Apache Hive

Migration to Cloudera Data Warehouse
If your Hive jobs are unpredictable, consider migrating to Cloudera Data Warehouse (CDW) and running your Hive
workloads on LLAP mode. LLAP offers ETL performance and scalability for complex data warehousing jobs.

Such a move can meet or exceed your customer satisfaction requirements, or cut the expense of running your jobs, or
both. You set up automatic scaling up of compute resources when needed, or shutting down when not needed.

106

https://docs.cloudera.com/cdw-runtime/cloud/hive-introduction/topics/hive_optimizing_data_warehouse.html

CDP Private Cloud Migration paths from HDP 3 to CDP for LLAP users

LLAP along with the query isolation feature is best suited for data-intensive queries, such as ETL queries, and require
auto-scaling based on the total scan size of the query.

If your Hive jobs are unpredictable and if you are running complex interactive queries, migrate to CDW. You perform
the following configuration when taking this path:

• Configure CDW according to your plan for scaling and concurrency
• Tune the Hive Virtual Warehouse to handle peak workloads

When you create a CDW Virtual Warehouse, you configure the size and concurrency of queries to set up LLAP.
The configuration is simple compared to HDP configurations of LLAP. In Hive Virtual Warehouses, each size
setting indicates the number of concurrent queries that can be run. For example, an X-Small Hive on LLAP Virtual
Warehouse can run 2 TB of data in its cache.

Related Information
Apache Tez execution engine for Apache Hive

Query isolation for data-intensive queries

Auto scaling of Virtual Warehouses in CDW

Virtual Warehouse sizing requirements

Tuning Virtual Warehouses

Apache Tez processing of Hive jobs
After migrating to Cloudera Private Cloud Base CDP Public Cloud, or Cloudera Data Warehouse (CDW), you must
understand how the Apache Tez execution engine is used to run your Hive workloads.

Apache Tez provides the framework to run a job that creates a graph with vertices and tasks. The entire execution
plan is created under this framework. Apache Tez provides the following execution modes:

• Container mode — Every time you run a Hive query, Tez requests a container from YARN.
• LLAP mode — Every time you run a Hive query, Tez asks the LLAP daemon for a free thread, and starts running

a fragment.

SQL syntax in Hive is the same irrespective of execution mode used in Hive. In Cloudera Private Cloud Base and
CDP Public Cloud, Tez always runs in container mode and is commonly called Hive on Tez. In CDW, Tez always
runs in LLAP mode. You can use the query isolation feature if you are running complex ETL workloads.

Migration paths for Spark users
If you are on HDP and executing Spark workloads in Hive LLAP mode, and you want to upgrade to CDP, you can
follow the migration path that matches your security needs. It is recommended that you upgrade to Cloudera Private
Cloud Base and choose either Hive Warehouse Connector (HWC) or native Spark readers to query Hive from Spark.

As a replacement for the HWC LLAP execution mode in HDP, you can use the HWC Secure Access Mode in
Cloudera Private Cloud Base that offers fine-grained access control (FGAC) column masking and row filtering to
secure managed (ACID), or even external, Hive table data that you read from Spark.

The following migration paths are recommended based on certain factors:

Migrate to Cloudera Private Cloud Base

• Use HWC JDBC Cluster mode — If the user does not have access to data in the file system and if the database
query returns are less than 1 GB of data.

• Use HWC Secure access mode — If the user does not have access to data in the file system and if the database
query returns are more than 1 GB of data.

• Use HWC Direct reader mode — If the user has access to data in the file system and if you are querying Hive
managed tables.

• Use native Spark reader — If the user has access to data in the file system and if you are querying Hive external
tables.

107

https://docs.cloudera.com/cdw-runtime/cloud/hive-introduction/topics/hive_optimizing_data_warehouse.html
https://docs.cloudera.com/data-warehouse/cloud/auto-scaling/topics/dw-hive-query-isolation-data-intensive-queries-public.html
https://docs.cloudera.com/data-warehouse/cloud/auto-scaling/topics/dw-public-cloud-autoscaling-overview.html
https://docs.cloudera.com/data-warehouse/cloud/planning/topics/dw-public-cloud-vw-env-size-requirements-planning.html
https://docs.cloudera.com/data-warehouse/cloud/managing-warehouses/topics/dw-tuning-hive-llap-data-warehouses.html

CDP Private Cloud Migration paths from HDP 3 to CDP for LLAP users

The following diagram shows these recommended paths:

Migration to Cloudera Private Cloud Base
If you are a Spark user migrating from HDP to CDP and accessing Hive workloads through the Hive Warehouse
Connector (HWC), consider migrating to Cloudera Private Cloud Base and based on your use cases, use the various
HWC read modes to access Hive managed tables from Spark.

Use HWC JDBC Cluster mode

If the user does not have access to the file systems (restricted access), you can use HWC to submit HiveSQL from
Spark with benefits of fine-grained access control (FGAC), row filtering and column masking, to securely access
Hive tables from Spark.

However, if the size of your database query returns are less than 1 GB of data, it is recommended that you use
HWC JDBC Cluster mode in which Spark executors connect to Hive through JDBC, and execute the query. Larger
workloads are not recommended for JDBC reads in production due to slow performance.

Use HWC Secure access mode

If the user does not have access to the file systems (restricted access) and if the size of database query returns are
greater than 1 GB of data, it is recommended to use HWC Secure access mode that offers fine-grained access control
(FGAC), row filtering and column masking to access Hive table data from Spark.

Secure access mode enables you to set up an HDFS staging location to temporarily store Hive files that users need to
read from Spark and secure the data using Ranger FGAC.

108

CDP Private Cloud Migration paths from HDP 3 to CDP for LLAP users

Use HWC Direct reader mode

If the user has access to the file systems (ETL jobs do not require authorization and run as super user) and if you are
accessing Hive managed tables, you can use the HWC Direct reader mode to allow Spark to read directly from the
managed table location.

Important: This workload must be run with ‘hive’ user permissions.

If you are querying Hive external tables, use Spark native readers to read the external tables from Spark.

Related Information
Row-level filtering and column masking in Hive

Introduction to HWC JDBC read mode

Introduction to HWC Secure access mode

Introduction to HWC Direct reader mode

HWC changes from HDP to CDP
You need to understand the Hive Warehouse Connector (HWC) changes from HDP to CDP. Extensive HWC
documentation can prepare you to update your HWC code to run on CDP. In CDP, methods and the configuration of
the HWC connections differ from HDP.

Deprecated methods

The following methods have been deprecated in Cloudera Runtime 7.1.7:

• hive.execute()
• hive.executeQuery()

The HWC interface is simplified in CDP resulting in the convergence of the execute/ executeQuery methods to the
sql method. The execute/ executeQuery methods are deprecated and will be removed from CDP in a future release.
Historical calls to execute/ executeQuery used the JDBC connection and were limited to 1000 records. The 1000
record limitation does not apply to the sqlmethod, although using JDBC cluster mode is recommended only for
production for workloads having a data size of 1GB or less. Larger workloads are not recommended for JDBC reads
in production due to slow performance.

Although the old methods are still supported in CDP for backward compatibility, refactoring your code to use
the sql method for all configurations (JDBC client, Direct Reader V1 or V2, and Secure Access modes) is highly
recommended.

Recommended method refactoring

The following table shows the recommended method refactoring:

API From HDP To CDP HDP Example CDP Example

HWC sql API execute and executeQuery
methods

sql method hive.execute("select
 * from default.hwct
est").show(1, false)

hive.sql("select * f
rom default.hwctest"
).show(1, false)

Spark sql API sql and spark.read.table
methods

No change sql("select * from m
anagedTable").show

scala> spark.read.ta
ble("managedTabl
e").show

sql("select * from m
anagedTable").show

scala> spark.read.ta
ble("managedTabl
e").show

DataFrames
API

spark.read.format method No change val df = spark.read.
format("HiveAcid
").options(Map("tabl

val df = spark.read.
format("HiveAcid
").options(Map("tabl

109

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-row-level-filtering-and-column-masking-in-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive-hwc-configuring-jdbc.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_spark_secure_access_mode_introduction.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_spark_direct_reader.html

CDP Private Cloud Migrating Hive workloads from Cloudera Base on premises to
Cloudera Data Warehouse on premises

API From HDP To CDP HDP Example CDP Example

e" -> "default.acidt
bl")).load()

e" -> "default.acidt
bl")).load()

Deprecated and changed configurations

HWC read configuration is simplified in CDP. You use a common configuration for Spark Direct Reader, JDBC
Cluster, or Secure Access mode.

The following HWC configurations that you might have used in HDP 3.1.5 cannot be used in CDP:

• --conf spark.hadoop.hive.llap.daemon.service.hosts
• --conf spark.hadoop.hive.zookeeper.quorum

Recommended configuration refactoring

Refactor configuration code to remove unsupported configurations. Use the following common configuration
property: spark.datasource.hive.warehouse.read.mode.

You can transparently read data from Spark with HWC in different modes using just spark.sql("<query>").

Secured cluster configurations

In secured cluster configurations, you must set configurations as described in the HWC documentation for CDP:

• --conf "spark.security.credentials.hiveserver2.enabled=true"
• --conf "spark.sql.hive.hiveserver2.jdbc.url.principal=hive/_HOST@ROOT.HWX.SITE"

The jdbc url must not contain the jdbc url principal and must be passed as shown here.

Deprecated features

The following features have been deprecated and will be removed from CDP in a future release:

• Catalog browsing
• JDBC client mode configuration

Related Information
Introduction to Hive Warehouse Connector

Migrating Hive workloads from Cloudera Base on
premises to Cloudera Data Warehouse on premises

To migrate the Hive workloads to Cloudera Data Warehouse Data Service, you must have upgraded from your legacy
platform to Cloudera Base on premises. Learn how to set up your Virtual Warehouse instance and migrate your
workloads to Hive LLAP (Low-Latency Analytical Processing) in Cloudera Data Warehouse.

The Cloudera Data Warehouse service provides data warehouses that can be configured and isolated. You scale
resources up and down to meet your business demands, and save costs by suspending and resuming resources
automatically.

Hive LLAP along with the query isolation feature is best suited for data-intensive queries, such as ETL queries, that
require auto-scaling based on the total scan size of the query.

Migrating your Hive workloads to Cloudera Data Warehouse helps you leverage the auto-scaling, workload
optimization, isolation, data caching, and many other powerful capabilities that Cloudera Data Warehouse offers.

This document aims to help you understand the process of migrating Hive workloads from Cloudera Base on
premisesto Cloudera Data Warehouse and assumes that you have already upgraded to Cloudera Base on premises.

110

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html

CDP Private Cloud Migrating Hive workloads from Cloudera Base on premises to
Cloudera Data Warehouse on premises

Review the following migration scenarios if you want to migrate to Cloudera Data Warehouse from legacy platforms
or Cloudera:

• Migrating from HDP to Cloudera Data Warehouse

If you are migrating from HDP and running workloads using LLAP or Hive on Tez, you must first
upgrade to Cloudera on premises either through an In-Place upgrade or Sidecar migration. You can
then follow the Migrating from Cloudera Base on premises to Cloudera Data Warehouse document
to migrate your Hive workloads to Cloudera Data Warehouse.

To understand how LLAP in HDP is different from LLAP in Cloudera Data Warehouse, see
Migrate from HDP (LLAP) to Cloudera Data Warehouse (LLAP).

• Migrating from CDH to Cloudera Data Warehouse

If you are migrating from CDH and running workloads using Hive on Map Reduce, you must first
upgrade to Cloudera on premises either through an In-Place upgrade or Sidecar migration. You can
then follow the Migrating from Cloudera on premises to Cloudera Data Warehouse document to
migrate your Hive workloads to Cloudera Data Warehouse.

• Migrating from Cloudera Base on premises to Cloudera Data Warehouse

If you are migrating from Cloudera on premises and running workloads in the Tez container mode
(Hive on Tez), learn how you can migrate to Cloudera Data Warehouse on premises and run Hive
workloads on LLAP mode. For more information, see Migrate from Cloudera on premises (Hive on
Tez) to Cloudera Data Warehouse (LLAP).

After you have upgraded to Cloudera on premises, you can install Cloudera Data Services on premises and migrate
your workloads to Cloudera Data Warehouse. Use the guidance provided in this document to plan your Virtual
Warehouse instances based on the workloads that you are running. For more information, see Planning a Virtual
Warehouse instance.

You must also understand how Hive queries are processed in Cloudera Data Warehouse using the LLAP execution
mode and be aware of the differences between LLAP in Cloudera Data Warehouse and Hive on Tez in Cloudera. For
more information, see Apache Tez processing of Hive jobs.

Related Information
Installing on premises Data Services

Planning a Cloudera Data Warehouse Virtual Warehouse instance
A Hive Virtual Warehouse is an instance of compute resources with various options that allow you to control the size,
elasticity, and availability of the data warehouse to meet your varying workload demands. Therefore, it is essential
to understand the type of workloads or number of concurrent queries that your Virtual Warehouse must serve during
peak periods before deciding the size of your Virtual Warehouse.

If you are upgrading from legacy platforms or Cloudera to Cloudera Data Warehouse on premises and migrating
workloads that used to run on YARN, you may want to consider building your Virtual Warehouse instance as a
copy of the compute resources that you have defined in the YARN queues. If these YARN queues are sized based
on workload types, such as BI or ETL, you may use this document as a reference to plan your Virtual Warehouse
instance.

In Cloudera Data Warehouse, a Virtual Warehouse is categorized based on sizes that represent the size of an Executor
Group that handles query requests. Queries can only run within the boundaries of an Executor Group.

Mixing workloads with different characteristics in the same Executor Group makes it difficult to predict Service
Level Agreements (SLAs). Therefore, it is important that you understand your workloads and plan your Virtual
Warehouses based on the workload types.

• Business Intelligence (BI) workloads

Business Intelligence (BI) workloads are usually smaller with more targeted datasets. Response
times need to be optimized because operations depend on near real-time analysis.

111

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-hdp3/topics/amb3-hdp-cdp-upg.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/sidecar-migration-hdp/topics/cdppvc-sidecar-migrate-hdp.html#concept_ftf_kwp_fsb
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-hdp-llap.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-cdh6/topics/cdpdc-cdh6-overview.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/sidecar-migration-cdh/topics/cdppvc-sidecar-migrate-cdh.html#concept_g1f_dwp_fsb
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-cdp-hiveontez.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-cdp-hiveontez.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-plan-vw.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-plan-vw.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-tez-job-processing.html
https://docs.cloudera.com/cdp-private-cloud-data-services/1.5.4/index.html

CDP Private Cloud Migrating Hive workloads from Cloudera Base on premises to
Cloudera Data Warehouse on premises

• Research BI workloads

Research BI workloads dive deeper into data exploration than BI workloads. Datasets used in
research may not always be optimized for performance. In Research BI workloads, the balance can
tilt more towards the cost side of the equation than that of BI workloads.

• Discovery ETL workloads

Discovery ETL workloads are unpredictable and take “Research BI” into longer-running
exploratory pipelines that might yield desired results.

• Production ETL workloads

Production ETL workloads are predictable and usually come with SLAs. They build out the data
models used by BI and Research that run the business. They can also be very resource intensive and
traverse through a lot of data.

You must create a Virtual Warehouse instance with these workload characteristics in mind. Data Services, where
Virtual Warehouse instances are created, provide isolation for other Virtual Warehouses or Data Service instances
running workloads. However, there is no isolation within an Executor Group of a Virtual Warehouse instance.

The following table lists the Virtual Warehouse sizes that you can choose based on the workload types that are
described above:

XSMALL (2
executors)

SMALL (10
executors)

MEDIUM (20
executors)

LARGE (40
executors)

Custom

BI X X

Research BI X X

Discovery ETL X X X

Production ETL X1 X1 X1

1 Consider the Query Isolation mode for Virtual Warehouse instances that run complex ETL-type queries requiring
intensive data scanning.

Related Information
Hive auto-scaling on Cloudera Data Warehouse on premises

Hive LLAP auto-scale threshold settings

Apache Tez processing of Hive jobs
If you were running Hive on HDP or Cloudera, you have been running Hive queries using the Apache Tez execution
engine. Hive in Cloudera Data Warehouse on premises also uses Tez to run queries and is a HiveServer2 endpoint
as it is in HDP or Cloudera. Learn how Tez processes Hive jobs in Cloudera and Cloudera Data Warehouse and
understand the tasks that you need to perform after migrating your workloads to Cloudera Data Warehouse.

Hive is fundamentally the same technology in HDP, Cloudera Base on premises, and Cloudera Data Warehouse on
premises. Hive syntax and semantics are basically the same after upgrading from HDP to Cloudera on premises or to
Cloudera Data Warehouse on premises.

Apache Tez provides the framework to run a job that creates a graph with vertices and tasks. SQL semantics for
deciding the query physical plan, which identifies how to execute the query in a distributed fashion, is based on
Apache Tez. The entire execution plan is created under this framework. Apache Tez provides the following execution
modes:

• Container mode — Every time you run a Hive query, Tez requests a container from YARN.
• LLAP mode — Every time you run a Hive query, Tez asks the LLAP daemon for a free thread, and starts running

a fragment.

112

https://docs.cloudera.com/data-warehouse/1.5.4/managing-warehouses/topics/dw-pvc-hive-vw-create-options.html
https://docs.cloudera.com/data-warehouse/1.5.4/managing-warehouses/topics/dw-private-cloud-auto-scale-threshold-settings.html

CDP Private Cloud Migrating Hive workloads from Cloudera Base on premises to
Cloudera Data Warehouse on premises

In Cloudera Data Warehouse, the Hive execution mode is LLAP. In Cloudera Data Hubon Cloudera on cloud and
Cloudera Base on premises, the Hive execution mode is container, and LLAP mode is not supported. When Apache
Tez runs Hive in container mode, it has traditionally been called Hive on Tez.

Considerations

There are certain differences between Hive on Tez and LLAP that you need to be aware of before migrating to
Cloudera Data Warehouse on premises.

• The HiveServer2 endpoints authenticate using LDAP instead of Kerberos.
• Your old Hive JDBC drivers need to be replaced with the latest drivers.
• If you have Hive User-Defined Functions (UDFs) in Cloudera Base on premises then the UDF JARs have to be

added to the Cloudera Data Warehouse Hive classpath and registered.

Post-migration tasks

After migrating to Cloudera Data Warehouse on premises, perform the following tasks:

1. Download the latest Hive JDBC drivers from the Hive JDBC driver download page and follow the driver
installation instructions on the download page.

2. Update the JDBC client connection URL to point to the Virtual Warehouse instance of HiveServer2.
3. If your previous connection in Cloudera Base on premises used Kerberos for authentication, you must modify the

connection URL accordingly.
4. Ensure that the UDF JARs are added to the CDW_HIVE_AUX_JARS_PATH environment variable.

Related Information
Connecting Hive to BI tools using a JDBC driver in Cloudera Data Warehouse

Hive authentication

Uploading additional JARs to Cloudera Data Warehouse

Migrate Hive workloads from HDP (LLAP) to Cloudera Data Warehouse
(LLAP)

If you are on the HDP platform and running your Hive workloads using LLAP (low-latency analytical processing),
learn how you can migrate to Cloudera Data Warehouse on premises without compromising on the performance
offered by LLAP.

You perform the following high-level tasks to migrate from HDP (LLAP) to Cloudera Data Warehouse (LLAP):

1. Upgrade your clusters to Cloudera Base on premises.
2. Install Cloudera Data Services on premises.
3. Migrate your Hive workloads to Cloudera Data Warehouse.
4. Perform the post-migration tasks described in Apache Tez processing of Hive jobs.

LLAP in HDP

LLAP on HDP runs on YARN with a persistent LLAP daemon that provides execution and caching of data. You can
adjust many aspects of the LLAP deployment, such as:

• Size of the LLAP daemons (Memory / Executors)
• Number of daemons created to scale up and handle large workloads
• Number of Apache Tez ApplicationMasters (coordinators) to establish query concurrency
• Ratio of memory used for processing and cache

The YARN configurations in HDP are complex and are not usually optimal, leading to poor experiences.

113

https://www.cloudera.com/downloads/connectors/hive/jdbc
https://docs.cloudera.com/cdw-runtime/1.5.4/integrating-hive-and-bi/topics/dw-integrating-third-party-tools.html
https://docs.cloudera.com/cdw-runtime/1.5.4/securing-hive/topics/hive_remote_data_access.html
https://docs.cloudera.com/data-warehouse/1.5.4/bi-tools/topics/dw-hive-upload-additional-jars.html

CDP Private Cloud Migrating Hive workloads from Cloudera Base on premises to
Cloudera Data Warehouse on premises

In HDP, you could only have one LLAP instance running and the instance was sized to handle workloads at peak
intervals. The LLAP instances in HDP could not autoscale and consumed a finite amount of YARN resources
regardless of whether workloads were running or not.

When Hive LLAP is used for large complex ETL queries and without a robust workload management in place, large
workloads can block BI-type workloads thereby leading to poor user experience for BI users.

Some advanced LLAP on YARN implementations may have used ‘Hive Workload Management’ in LLAP to help
manage query isolation and deal with query outliers. ‘Hive Workload Management’ in LLAP is not supported in
Cloudera Data Warehouse, however, query isolation in Cloudera Data Warehouse ensures that individual warehouses
are completely isolated and ensures that instances have sufficient compute resources for their workloads.

LLAP in Cloudera Data Warehouse

In Cloudera Data Warehouse on premises, Hive LLAP runs in Docker containers on Kubernetes instead of YARN.
The Virtual Warehouse instances in Cloudera Data Warehouse are preconfigured to handle the LLAP configurations
described above and are optimized for your workloads thereby enabling a predictable and stable deployment.

Cloudera Data Warehouse offers the following benefits:

• Provides isolation by having more than one LLAP instance, which was not easily obtained in LLAP on HDP
• Enables Virtual Warehouse instances to AutoScale (scale up and down) to address varying workload demands
• Automatically suspends a Virtual Warehouse instance if workloads cease and Executors are left idle for a period

of time

While setting up your Virtual Warehouse, consider setting up multiple instances to leverage the full use of LLAP that
you have enjoyed on HDP. The Virtual Warehouse instances should be configured based on the characteristics of the
workloads.

Query concurrency in Cloudera Data Warehouse is controlled by the number of Coordinators in an Executor
Group. HiveServer locates an available query coordinator in the Virtual Warehouse to handle the query. The query
coordinator generates the final query plan that distributes query tasks across available Executors for execution.
Each query coordinator can send query tasks to all query Executors in the Executor Group. There is a 1:1 ratio of
Coordinators to Executor Groups. When the query load increases, auto-scaling increases concurrency by adding
additional query Executor Groups to the Virtual Warehouse instance.

The following table lists the size of the Executor Groups and Coordinators based on the Virtual Warehouse size:

Executors Coordinators (Query
Concurrency)

XSMALL 2 2

SMALL 10 10

MEDIUM 20 20

LARGE 40 40

HDP and Cloudera Data Warehouse LLAP terminology map

When migrating HDP LLAP configurations to Cloudera Data Warehouse, you need to familiarize yourself with the
differences in terminology and default configurations that are available in Cloudera Data Warehouse.

Term LLAP on HDP LLAP on Cloudera Data
Warehouse

Number of LLAP nodes num_llap_count Number of query executors

Number of internal executors in a
single LLAP daemon instance.

hive.llap.daemon.num.executors Not available during setup. By
default, 12 Executors are allowed per
Executor Group.

114

CDP Private Cloud Migrating Hive workloads from Cloudera Base on premises to
Cloudera Data Warehouse on premises

Term LLAP on HDP LLAP on Cloudera Data
Warehouse

Also described as the number of
daemons; not the internal number of
task slots.

Query Concurrency hive.server2.tez.sessions.per.defaul
t.queue

Known as Coordinators and are
configured 1:1 with Executor Groups

Total Daemon Memory Size hive.llap.daemon.yarn.container.mb This comes in two modes:

• Standard resource mode
(Production) allocates 128 GB
per daemon

• Low resource mode allocates 48
GB per daemon

For more information, see Resource
planning.

Daemon Task Memory llap_heap_size Preconfigured to 48 GB in Standard
resource mode and 16 GB in Low
resource mode.

Daemon Cache Memory Calculated difference between total
memory allocation - (headroom +
llap_heap_size

)

Calculated value of approximately 70
GB.

Total memory (128 GB) - Headroom
and task memory (48 GB).

Headroom Refers to an LLAP daemon node's
memory used for non-task and non-
cache requirements.

Configuration to specify number of
available coordinators that trigger
auto-scaling.

Related Information
Installing on premises Data Services

Apache Tez processing of Hive jobs

Planning a Virtual Warehouse instance

Hive auto-scaling on Cloudera Data Warehouse on premises

Migrate from Cloudera Base on premises (Hive on Tez) to Cloudera Data
Warehouse (LLAP)

If you are on the Cloudera Base on premises platform and running your Hive workloads in the Tez container mode
(Hive on Tez), learn how you can migrate to Cloudera Data Warehouse on premises and run Hive workloads on
LLAP mode. LLAP offers ETL performance and scalability for complex data warehousing jobs.

Such a move can meet or exceed your customer satisfaction requirements, or cut the expense of running your jobs, or
both. You set up automatic scaling up of compute resources when needed, or shutting down when not needed.

LLAP along with the query isolation feature is best suited for data-intensive queries, such as ETL queries, and require
auto-scaling based on the total scan size of the query.

You perform the following high-level tasks to migrate from Cloudera Base on premises (Hive on Tez) to Cloudera
Data Warehouse (LLAP):

1. Install Cloudera Base on premises.
2. Migrate your Hive workloads to Cloudera Data Warehouse.

115

https://docs.cloudera.com/data-warehouse/1.5.4/private-cloud-getting-started/topics/dw-private-cloud-openshift-get-started-requirements.html
https://docs.cloudera.com/data-warehouse/1.5.4/private-cloud-getting-started/topics/dw-private-cloud-openshift-get-started-requirements.html
https://docs.cloudera.com/cdp-private-cloud-data-services/1.5.4/index.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-tez-job-processing.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-plan-vw.html
https://docs.cloudera.com/data-warehouse/1.5.4/managing-warehouses/topics/dw-pvc-hive-vw-create-options.html

CDP Private Cloud Migrating Hive workloads to ACID

3. Perform the post-migration tasks described in Apache Tez processing of Hive jobs.

Hive on Tez in Cloudera Base on premises vs LLAP in Cloudera Data Warehouse

The direct correlation between YARN on Cloudera on premises and Cloudera Data Warehouse on premises is the
YARN queue. Every time you run a Hive query in Cloudera, Apache Tez requests a container from YARN. Tez
jobs on YARN allocate containers based on the Tez configurations. Containers used to run queries consume a finite
amount of memory but rarely use all that memory.

For example, consider a job that runs in 10 containers with each container using 4 GB of memory. This translates to
40 GB of memory used by the job. Now, if the actual memory used by the job is only 75% of 40 GB, it results in an
overallocation of 10 GB of memory.

In comparison, task containers in Cloudera Data Warehouse are allocated 50% faster than the containers on YARN.
Since the containers are part of a larger Java Virtual Machine (JVM), the memory is already allocated for the task
and the memory is shared with other task containers in the larger JVM. This ensures that there is no overallocation of
memory for each task to address the potential outlier memory requirement.

The improvements that a Cloudera Data Warehouse Virtual Warehouse instance has for task allocation as compared
to YARN, translates to as much as 50% fewer resources (memory/cores (executors)) that are required to run the same
job. A queue in YARN is 100% allocated with no elasticity whereas a Virtual Warehouse instance size with 50% of
that capacity should be enough to start with.

If the YARN queue only reaches capacity during certain times of the day, then the Virtual Warehouse instance can
just be a fraction of the total queue size if the instance is configured with concurrency auto-scaling.

If the jobs running on the Virtual Warehouse instance are unpredictable or are required only during certain times of
the day, consider disabling AutoSuspend on the instance so that resources are given back when not used.

Some of the other advantages of Cloudera Data Warehouse (LLAP) over Hive on TEZ (YARN) are:

• Data Caching
• Faster task startup times
• Established sessions; no latency establishing a session

Related Information
Installing on premises Data Services

Apache Tez processing of Hive jobs

Planning a Virtual Warehouse instance

Hive auto-scaling on Cloudera Data Warehouse on premises

Configuring AutoSuspend

Migrating Hive workloads to ACID

An Apache Hive transactional table is also known as a Hive ACID table. The terms transactional and ACID are
interchangeable. Data from transactions involving money, especially, but also other transactions, require databases
that meet ACID requirements. You learn what ACID means and some features available if you use ACID tables.

This documentation describes Hive 3 under default conditions. All managed tables are ACID tables.

ACID is an acronym that describes database properties as follows:

A = Atomic: Changes to the database occur all at once or not at all.

C = Consistent: Before and after system failures, results of inserts and deletes are the same.

I = Isolated: A read operation is not affected by changes to the database that occur during the operation.

D = Durable: Successful transactions occur regardless of system failure.

116

https://docs.cloudera.com/cdp-private-cloud-data-services/1.5.4/index.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-tez-job-processing.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/migrate-hive-workloads/topics/hive-llap-migration-cdwpvc-plan-vw.html
https://docs.cloudera.com/data-warehouse/1.5.4/managing-warehouses/topics/dw-pvc-hive-vw-create-options.html
https://docs.cloudera.com/data-warehouse/1.5.4/managing-warehouses/topics/dw-pvc-auto-suspend.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive_whats_new_in_this_release_hive.html

CDP Private Cloud Migrating Hive workloads to ACID

Atomic means simultaneous operations do not interfere with each othter. Once done, the result of an atomic operation
is available to others. Transactions are consistent between operations. An operation is isolated in its own workspace
and durable, meaning after being committed, data remains and survives any failure.

If the data about your transactions does not have to be atomic, consistent, isolated, and durable, you can configure
Hive to create managed tables that are not ACID.

You get a number of capabilities described in the following sections when you use ACID tables.

Query results cache and data cache

Results of ACID tables that Hive manages on the file system and in HMS can be cached. To reliably deal with
data caching and query results caching, Hive needs to check that nothing is changed. If something changed, Hive
invalidates those items to read more data. Hive must have complete control over the tables to perform the checks
associated with caching.

System management of ACID tables

ACID tables, which are transactional tables, are managed by Hive. Hive tightly controls data storage and access.
By default, direct file system access to the managed Hive warehouse files is not allowed. Hive keeps you out of the
warehouse. You do not need to access the Hive files on the file system. Access to the file system subverts security
and governance on Hive tables beyond just reading the columns. The data masking in columns and row filtering are
compromised if you have access to the files. Exceptions: Ranger RMS policies are projected down to the file system
level to handle Spark and Hive Warehouse Connector (HWC) Direct Reader access.

Hive stops external operations from changing managed files to prevent data integrity and corruption problems.

Compaction

Managed tables go through a compaction process. You can make inserts into table repeatedly and the ACID
compaction system helps clean up inserts. The system compacts the changes, reducing your footprint of small
files (delta files). You cannot, however, batch micro inserts, such as making 1000 inserts at one time. This creates
problems with the system. Hive is a batch system, not intended to be handling online transaction processing (OLTP).

Hive statistics

Managed tables generates and manages table statistics for ACID tables. This is not necessarily true for other tables.

Governance of Hive tables

Hive tables are managed, audited, and have protected columns. You can protect the data level using masking and row
level filtering.

Advanced features

Advanced features, in addition to ACID, include materialized views, the query cache, and automatic statistics
generation. You can update or delete data from ACID tables. Hive 3 addresses small files different from Hive 2.

For more information, see the Hive product documentation on the Cloudera web site:

• Materialized views
• Query results cache
• Automatically collected statistics
• Mutability

• Updates allowed
• Deletes allowed

• Handling small files

117

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-performance-tuning/topics/hive-query-results-cache.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive-apache-hive-3-architectural-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-row-level-filtering-and-column-masking-in-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-rms-configuring-and-using/topics/security-ranger-rms-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/managing-hive/topics/hive_hive_data_compaction.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_3_internals.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_3_internals.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/configuring-apache-hive/topics/hive_cost_based_optimizer_overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-row-level-filtering-and-column-masking-in-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-row-level-filtering-and-column-masking-in-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_using_materialized_views.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-performance-tuning/topics/hive-query-results-cache.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/configuring-apache-hive/topics/hive_cost_based_optimizer_overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_update_data_in_a_hive_table.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_delete_data_from_a_hive_table.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_3_internals.html

CDP Private Cloud Migrating Hive workloads to ACID

Tables in Hive 1 and 2 vs. Hive 3
Ownership, specifying the location of Hive tables, and the default location of Hive tables have changed in Hive 3.
You gain an understanding of some restrictions and limitations of Hive 3 in Cloudera under default configurations.
You need to understand how this change impacts your workflow.

In Hive 1 and 2, the owner of a managed table data is the table itself. If you drop the table you drop the data. In Hive
3, the system user hive typically owns the managed table data. Exceptions include Hive 3 Streaming in which the
streaming user owns the data. Hive performs compaction of the files. Deltas and the data location is controlled by
Hive.

In the default Hive 3 in Cloudera, you typically cannot specify a location in a CREATE TABLE statement. Hive
finds the location of the table location by first looking in the metastore default warehouse directory, the managed
warehouse directory. The default location of Hive tables has changed in Hive 3. The managed warehouse is the
default location of ACID files. There is also a location in the warehouse for external files. You can change a Hive
property to change the warehouse directory, and if your HiveServer (HS2) is connected to the Hive metastore (HMS),
the new locations take effect. You can change the location of managed tables and the location of external tables for a
specific database. New tables created in that database use the new location.

In Hive 3, all managed tables are transactional (ACID). There is a tight relationship between the metadata and data.
Hive keeps track of file system changes as well as metastore changes to satisify features, such as column masking for
fine-grained access restrictions.

Compatible storage formats
You need to know the recommended formats for Hive ACID tables, and how you can access tables from Spark. The
HMS translation layer checks the capabilities of a Hive client that tries to access Hive and returns an error message
designed to help you resolve an access problem.

For Hive ACID, ORC is the recommended native storage format. You can insert, append, update, delete data in
ORC format, but Hive ACID is not restricted to ORC. You can do insert/append operations to files in most other
formats, such as text, Parquet, and AVRO. For more information about ORC, see ORC file format and Advanced
ORC properties in Hive Performance Tuning.

Spark is not natively compatible with ACID tables. You need to use Hive Warehouse Connector (HWC) to read Hive
ACID tables from the Hive metastore. There are two modes for HWC: JDBC mode and Direct Reader mode. The
HMS translation layer prevents Spark from accessing Hive tables.

The HMS translation layer checks each client connection to determine the capabilities of the client. For example,
HMS checks whether or not the client supports ORC and transactional tables. When a Spark client talks to the
metastore, it can bypass HiveServer (HS2). Some operations, such as Direct Reader and Hive Streaming, go to Hive
directly through HMS and reveal its capabilities to the HMS translation layer. If Spark does not have a connection
to HWC associated, when the Spark user tries to get information about the ACID table, the query fails. The HMS
translation layer determines that Spark without HWC does not have the required capabilities to access ACID tables,
and gives you an error.

Table design considerations
You need to understand the old way of designing tables and how bring some table design habits to ACID cause
problems. Solutions come later.

Managing data ingestion frequency

Things to consider when designing a table with Hive include ingest frequency. Data ingestion has been the controlling
factor in table designs on legacy platforms. ACID tables provide an opportunity to solve problems in legacy table
designs.

118

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_transactional_table_access.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/managing-hive/topics/hive_hive_data_compaction.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_3_internals.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive-unsupported.html#autid2
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive-table-location.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive-orc-parquet-compare.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-performance-tuning/topics/hive_maximize_storage_resources_using_orc.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-performance-tuning/topics/hive_advanced_orc_properties.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-performance-tuning/topics/hive_advanced_orc_properties.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive-hwc-configuring-jdbc.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_spark_direct_reader.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-metastore/topics/hive-hms-table-storage.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-metastore/topics/hive_apache_spark_hive_connection_configuration.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-metastore/topics/hive_apache_spark_hive_connection_configuration.html

CDP Private Cloud Migrating Hive workloads to ACID

On legacy platforms, you see a tendency to over-partition tables, not to gain an advantage from a consumer
standpoint, but for a physical demarkation point for the ingest process. If anything goes wrong, you delete the
partition representing the data for that ingest, and just move on.

A table design based on ingest frequency, which is the number of ingest events, can lead to an abnormal, inefficent
number of small files. Each ingest event creates a new series of files. Historically, to overcome this, you used
excessive partitions to define and mitigate problems from numerous appends to a physical location (base or partition).

Append operations on non-ACID tables create a small file problem.

Ingesting tables with numerous partitions, excessive append operations, and numerous READ operations result in the
following problems:

• Poor consumer performance
• Increase compute requirements
• File system management stress

An ACID table helps prevent issues by:

• Compacting append operations, building better file sizes through compactions.
• Building and maintaining statistics
• Atomic operations

When you cannot alter data sources, design your workflow as follows:

• Use an ingest table to sweep to an ACID table (append).
• Execute READs on ACID tables.
• When partitions make sense, design them for the consumer, not the ingest pattern.

Streaming Data Sources:

• Hive streaming (to an ACID table)

Building high-level partitions for ACID tables

With compactions and CRUD capabilities, you need to design tables for the consumer.

Partitioning that works fine for non-ACID tables, such as YYYY-MM-DD-HH, which represents 8760 partitions a
year, is not recommended for partitioning ACID tables. Build a higher-level partition, such as YYYY-MM, which
represents 12 partitions a year.

Let compactions manage and optimize the appends. Optimize by using larger files per partition. ORC file types with
columnar formatting, statistics, headers, footers, and Bloom Filters help optimize what Hive must scan, reducing I/O.

Tracking batches

To track batch Hive processes:

• Add a field to the table with the batch id.
• Use ORC CRUD functionality to remove and replay a batch instead of dropping the partition.

Hive ingest patterns introduction
Understanding what does not work when designing Hive tables helps you understand recommended patterns
discussed. You can avoid potential performance issues, and perhaps data loss.

Operations on non-ACID tables create a small file problem. Appending small, non-ACID files to the same partition
or table generally prevents consolidation of files inside the partition directory. Consolidation happens only after an
INSERT OVERWRITE to the table or partition.

119

CDP Private Cloud Migrating Hive workloads to ACID

Using classic INSERT OVERWRITE methods can lead to data loss. Data not picked up at beginning of INSERT
OVERWRITE can be lost. INSERT OVERWRITES are not atomic, so for a time during that operation, there will be
no data in the table when HMS is processing the data.

By contrast, ACID tables are consolidated through the compaction process. When you insert data into a non-ACID
table before writing results to target partition or table, Hive tries to write to the file as if the file were new, and empty.
An object storage failure, such as an HDFS failure, occurs as the file already exists because of a previous insert. Hive
renames the file to copy 1 and tries again. If another failure occurs, which it will because copy 1 exists in that dir, it
renames the file to copy 2.

An ACID anti-pattern is doing 1400 inserts a day to a relatively small table. Hive needs to iteract with the NameNode
1400 times, or more, just to insert a single file into a table. It must fail in each of the 1400 interations before finding a
number that works. In addition to a small file problem, the thrashing activity overwhelms the NameNode.

Creating a partition per ingest cycle is another classic pattern for managing batches. The pattern leads to the following
problems:

• Extremely poor performance on the consumer side
• Many small files
• Enormous pressure on the metastore and filesystem
• More compute to handle queries

Avoid ingesting tables having numerous partitions and heavy append operations. Consolidate files. Doing so
saves time and resources, and relieves stress on the NameNode. Running compaction of ACID tables achieves this
consolidation and prevents these problems. Hive also collects ACID table statistics. All ACID operations are atomic.

When your data source cannot be altered, for example when the frequency of ingesting data is high, you need to keep
the source data intact. You can use a sweep operation, or ingest table, to sweep data into an acid table. The ingest
table can be an external table populated by NiFi, for example. NiFi reads data from Kafka and writes files to HDFS.
Using a sweep table you append data to the ACID table on a less frequent basis. This technique helps you manage the
operation. Read operations from consumer side go through the ACID table, which can be consumed efficiently.

When partitions make sense, design the partitions for the consumer, not for the ingest pattern to the final target acid
table.

Classic ingest patterns
You need to move away from ingest patterns commonly used for Hive 1 and 2 that are consumer centric to avoid
performance problems on the consumer side.

The following diagram shows the classic partition that addresses the ingest pipeline instead of the consumer pipeline.
Multiple appends to the table or partition that create small files are minimally addressed with INSERT OVERWRITE.
This mitigation is not atomic.

Classic Pattern 1

120

CDP Private Cloud Migrating Hive workloads to ACID

This classic pattern shows repeatedly inserts: creating copy 1, copy 2, copy 3, copy 4. When you get to the sixth
insert, Hive tries to write the original file, but fails because it already exists. The write attempt will fail 6 times before
the insert succeeds.

This pattern can be summarized as follows:

• Brute force.

• Small files
• Poor performance

• Counter by:

• Overwrite compaction job

Problems:

• Not atomic
• Data if ingest events are not stopped

Classic pattern using partitions

When using Hive 1 or 2, creating a partition per ingest cycle helps you manage batches. This pattern results in
extremely poor performance on the consumer side for the following reasons:

• Generates many small files
• Pressures the metastore and file system
• Requires more compute to handle queries

121

CDP Private Cloud Migrating Hive workloads to ACID

Classic Pattern 2

Classic pattern 2 is similar to classic pattern 1, but adds a physical abstraction: partitioning.

Classic pattern 2 adds the pressure of partition management at the Hive metastore (HMS) level. Creating partitions
per cycle, for example on day, month, year, and hour was a convenient way to manage batches for Hive 1 and 2.
In Hive 3, partition ACID tables at a higher level. Instead of partitioning by day, for example, partition by month.
Consider the following things:

• How frequently you ingest the data.
• How often you update the data.
• The size of the data.

A daily partition thats yields 4MB of data makes sense on the ingest side, but causes problems on the consumer side.
In this case, it makes sense to change the partitioning from daily to monthly. To improve the yield, partition 4MB x
30 days of data a day to yields 120MG of data. The number of small files is reduced. Hive compacts the files. Queries
hit a higher density of records inside the same size ORC file.

Small partitions lead to HMS performance pressures and other problems, especially during heavy queries to the same
table. Heavy reads greatly increase the load on Hive metastore (HMS) to build the partition list. If partition pruning

122

CDP Private Cloud Migrating Hive workloads to ACID

does not occur, performance degrades. Build partitions of ACID tables on a level appropriate for your data volume.
You need a huge amount of data to justify partitioning by month, day, and hour, which represents 8700 partitions per
year.

Partitioning by month reduces the number of compaction operations and optimizes append operations.

ACID ingest patterns
Understanding Hive ACID ingest patterns helps you adopt one that fits best. You gain an understanding of how
to build a pipeline that keeps the original data and builds or updates a more efficient table for recurring READ
operations.

Although Hive handles compactions, micro-batching appends, and Hive streaming writes, you still have to avoid
inserting small records into ACID tables. Using ACID does not correct a bad ingest design. If you perform micro-
inserts and create many delta directories, at some point the compaction system, and other components, such as
NameNodes, have to reconcile the delta files. Eventually, compaction consolidates files, but if you have hundreds of
these delta files before compaction even starts, Hive needs to work hard in the background. Heavy compute resources
and metastore resources are needed.

The data you ingest into ACID tables using the following pattern must be of a reasonable size.

ACID pattern 1

ACID pattern 1 characteristics are:

• Handles compactions in the background, but you still have to understand the impact of deltas
• Performs well for micro batch appends and Hive streaming
• Works best when you partition on business need, not ingestion
• Frequently partitioned to optimize file size and access (pruning)
• Supports adding a batch-id field to record ingest events
• Not designed for online transaction processing (OLTP)

123

CDP Private Cloud Migrating Hive workloads to ACID

Consider how quickly you need to access the data. If you need immediate access to data, look at how many queries
your organization actually issues to access data received within the last 5 minutes, for example. You might realize
that rarely do you need access your data so quickly, but if not, consider other technologies, such as Impala with Kudu
or HBase.

If you need to track batch operations, for example by associating a batch ID with every record, add a second-level
partition element. Add a batch field to the table with the batch ID. You can perform delete operations against ACID
tables to remove a batch and replay it. ORC and CRUD functionality repair that table based on a replay or removal of
an insert.

Hive does not satisfy OLTP requirements.

ACID pattern 2

124

CDP Private Cloud Migrating Hive workloads to ACID

ACID pattern 2 has the following characteristics:

• Designed to be business-, not ingest-centric.
• Supports highly granular partitions, for example YY-MM-DD-HH vs YY-MM.
• Achieves efficient content size per partition to reduce file counts.

125

CDP Private Cloud Migrating Hive workloads to ACID

126

CDP Private Cloud Migrating Hive workloads to ACID

Beware of dynamic partitions and avoid cross partition distribution of data. If your design requires Hive to cross
partitions unnecessarily when you insert data into a table, collapse year-month-day-hour partitions down to year-
month if possible.

ACID pattern 3

To build a pipeline that keeps the original data and builds or updates a more efficient table for recurring READ
operations, use the ACID pattern 3.

ACID pattern 3 represents the sweep process. This pattern keeps track of historical changes. You can lose information
that has business value if you do not keep track the original transactional elements. Consider having an ingest table
with original values and also a change data capture (CDC) table. For example, if you have 2 million customers
making thousands of changes a day to an ACID table target, you lose all the thrashing that might have happened if
you do not capture changes.

Using a sweep process not only consolidates files to eleviate ACID performance problems, but also supports data
change analytics. If a consumer changes their address frequently, say 50 times a day, perhaps fraud is indicated. The
cost of space you need for historical data if often worth the expense.

A portion of the sweep pattern, shown below, looks similar to the classic ingest pattern. You use a non-acid table with
partitions. Instead of inserting data into a non-ACID table every 15 minutes, for example, you instead sweep data
from the ingest table into the ACID table every hour or two. You use the ACID table as your consumer table, which
has collapsed partitions. Hive performs compaction on the ACID table.

Another approach is to use an ACID table as the staging place for ingesting data or other data pipelines for writing
and aggregating data. Turn off auto-compaction, or raise thresholds, to enjoy tranaction isolation of your streaming
with no overhead.

In summary, use ACID pattern 3 as follows:

• Use a non-ACID table to stage micro batches to a final ACID table.

127

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive-create_partitions_dynamically.html

CDP Private Cloud Migrating Hive workloads to ACID

• Use more aggregate partition strategy (if required) on the final table (YYMM vs. YYMMDD_HH).
• Allow ACID to undergo compaction.
• Direct consumers to the final ACID table for better performance and less system resource overhead.
• Include a batch ID in the schema to support rollback.

ACID CDC pattern

The ACID CDC pattern has the following characteristics:

• Used for the initial seed of new records.
• Used for follow-up updates and inserts.
• Used for follow-up deletes.
• ACID deltas track updates and deletes, rolled up in SELECT.
• Relys on major compaction to reconcile updates and deletes.

128

CDP Private Cloud Migrating Hive workloads to ACID

For changing dimension tables, the ACID CDC pattern supports a large partition, late arriving data, or perhaps no
partition at all. Using the ACID CDC pattern, you might have just a consumer table. Inserts occur, and then updates to
the inserts. All changes are captured as delta records. A major compaction reconciles inserts and updates to give you a
new base. The next update creates another delta in this case.

When you insert into an ACID table, you must deduplicate the records before making insertions, or deduplicate the
records before updates. You cannot skip the deduplication process because there is no enforceable constraint primary
key that takes care of eliminating duplicate copies of data. If you put a record in a transactional table three times
before it is pushed into an ACID table, the record comes into Hive three times: first as an insert, next as an update,
and finally as another update before you push your changes into the ACID table through the merge process. You must

129

CDP Private Cloud Migrating Hive workloads to ACID

reconcile inserts and updates before the merge to make sure you get only one operation; otherwise, you get duplicate
records.

Handling government regulations in ACID tables
Your decision to use ACID tables, or not, might depend on your need to conform to government regulations. With
consumers right to be forgotten growing around the global, you need some way to purge these consumers from your
datasets. ACID supports features to meet these regulations.

Meeting the following government requirements is often subject to interpretation, but involves deleting records of
consumers who want to be forgotten on a web site.

Europe - GDPR

California - California Consumer Privacy Act 2018

Before you propagate Hive data, you can check for requests to be forgotten and comply with requests. ACID supports
deleting records. ACID completely removes data after a major compaction.

ACID tables support delete operations on datasets using MERGE. Operations are atomic, and are built into an ACID
table.

Key concepts about ACID ingest patterns

There are many variations to the ACID ingest patterns discussed earlier. The main points are:

• Using an ACID ingest pattern, the system manages file compactions in an atomic manner.
• Do not force your ingest patterns on the consumer through artificial partition strategies.
• If you need to maintain the source, use the sweep pattern. Consumers access the final table.
• Minimize repeated reads of inefficient datasets.

The following enhanced policies help protect sensitive data at a column or row level versus giving consumers file
access to all data:

• Column masking and row filtering

• Removes sensitive data from unauthorized users.
• Prevents derivative datasets and loss of control.

• Geographic policies

• Adds control depending on where you are.

After giving a consumer access to the file system, there is no way to protect the sensitive parts of the data.

Treat managed, ACID tables as tables, not as files. Use column masking and row filtering to restrict access to
sensitive data. Hive operations go through HiveServer (HS2). All policies are managed around the table context.
All operations on managed tables run as the hive user on service, who is analagous to the oracle user who is the user
accessing an Oracle system.

With delineation and enforcement of ACID tables, ACID tables become a single source of truth (SSOT). You can
control file spillage, and provide theft protection by limiting user access. The file system audits are not always
available for non-ACID tables in non-HDFS or ozone stores. If you have data in S3, for example, allow users go
through Hive but do not give them access to S3, then you can obtain an audit trail.

Modified ACID table location

Hive 3 does not allow you to specify a location when creating a table. Hive 3 does not allow LOCATION declarations
in the CREATE TABLE statement for the following reasons.

• Managed table file locations have stronger security requirements in Hive 3 than in Hive 1 and 2.

130

https://iapp.org/resources/article/the-eu-general-data-protection-regulation/
https://iapp.org/resources/article/california-consumer-privacy-act-of-2018/
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-row-level-filtering-and-column-masking-in-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-security-zones-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive-unsupported.html#autid2

CDP Private Cloud Migrating Hive workloads to ACID

• Hive 3 ensures the location matches policies that manage the space.

If the default locations of the Hive warehouse do not suit your use case, for example, if you have multiple TDE zones
or you like to control where you put things, you can override the warehouse location setting in the Hive metastore.
You set a MANAGEDLOCATION database property, and then new tables you create are stored in this managed
location. To see the managed location, you use a DESCRIBE DATABASE query.

You might need a custom Hive 3 warehouse directory location to meet the following requirements:

• Multi-tenant requirements
• Transparent data encryption (TDE) requirements

The default warehouse location is controlled by the hive.metastore.warehouse.dir property in the Hive metastore. Key
points about the Hive 3 warehouse directory are:

• Set the MANAGEDLOCATION property of the database using CREATE TABLE OR ALTER TABLE.
• Check the property value using DESCRIBE DATABASE.
• Ensure access to your new file system location for the hive service user.
• For transparent data encryption (TDE):

• Ensure that the hive service account has key access.
• Use an alternate warehouse location.

• Protects data at rest if the file should fall into the wrong hands.

Accessing Hive ACID tables from Spark

Spark interaction with ACID tables is not natively supported. When deciding if Spark users need access to ACID
tables, or not, determine your data priorities and the risk of exposing the data. If your security concerns outweigh ease
of access, ACID tables are a viable choice for use with Spark. You can protect parts of the database that Spark users
access.

Spark users cannot just run sparksql code on ACID tables. For governance reasons, users must go through the Hive
Warehouse Connector (HWC) and make code changes to access the non-native ACID tables. You need to consider
the options for accessing the non-native tables and the impact of GDPR (General Data Protection Regulation) to
determine if using ACID tables for Spark users works for you, or not.

Hive 3 on the Cloudera Data Platform does not support storage-based authorization (SBA). The default Hive doas
property is false, and results in code changes. These changes are mandatory to secure your data. Using old patterns
that required insert overwrites can cause data loss and slow Hive process. If you continue to use these pattern with
ACID, Hive will be slow. Hive 3 operations are atomic and require backend housekeeping. When you use acid table,s
you have to give up some part of the system to manage them with compaction. How much of your resources are
needed for compaction depends on how extensively you use ACID tables.

ACID has limitations, such as writing a thousand INSERT statements containing one record. Such inserts cause
problems. Hive ACID is not an online transaction processing (OLTP) system, but it can you can build a better and
cleaner data pipeline with Hive ACID, and it can perform well.

Audits, lineage, and enforcement

By applying policies to Hive ACID tables your Hive database can be a single source of truth for users. File spillage,
loss, and theft is protected by restricting user access to the file system database and tables using Ranger.

Views and materialized views

A materialized view is a database object that holds a query result you can use to speed up the execution of a query
workload. Materialized views require ACID tables.

In the following example, you select a row ID, perform an aggregate function, and group by consumer:

SELECT consumer_id, agg_function FROM detail_table GROUP BY consumer_id;

131

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_managed_location.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive-table-location.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_encryption.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-introduction/topics/hive-unsupported.html#autoId0
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_sba_permissions_model.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_sba_permissions_model.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/securing-hive/topics/hive_hive_authorization_models.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_using_materialized_views.html

CDP Private Cloud Migrating Hive workloads to ACID

The aggregate function is costly, depending on how the cost of scanning the table, how big the table is, and so on. The
aggregation is calculated each and every time you run that query.

Suppose you use a view. VIEW wraps the SELECT syntax. The view reference replaces the select, and is compiled
by Hive in the Directed Acyclic Graph (DAG). A view might appear easier to use and consume, but is no better, or
is worse, performance-wise than a materialized view. There is only a development advantage in using a view over a
materialized view.

Suppose you use a materialized view of Select with the same aggregations. The materialized view can be updated
or maintained in the background on a occasional basis. If you run aggregates on a frequent basis, the materialized
view might save significant time. You create a materialized view that matches the first aggregate function in the
table. When a user issues a query that includes the aggregation against the table again, the Hive Cost Based Optimizer
(CBO) checks that the materialized view is up-to-date with that aggregation, rewrites the query if out-of-date, and
uses the previously generated results instead of reading the entire table again.

Advantages of materialized views are:

• The speed of repeated dashboard-like queries improve.
• Query results are pre-built.
• Queries are optimized by the CBO:

• Query plans use materialized views if possible
• Reduces data Processing
• Quicker response times
• Fewer resources required

Query results cache

If you use ACID tables, repeated queries can be resolved by the query results cache. Query results caching works
only on ACID tables because Hive needs to completely manage the tables to do the caching. Hive knows whether
the ACID tables changed or not, so when you issue the query again, Hive just pulls the result without further
computation. Hive doesn't need to run the query again. If you have a dashboard, perhaps the first dashboard that runs
the query will cache the data for the next hour until the dashboard needs to be updated. User queries pull the results
from the cache, and save all of that compute time and resources.

You can configure Hive to manage a certain amount of space for the query result cache.

The query results cache identifies an asymmetric tree of the query DAG identical to a query that was run before and
stored on the cluster. No changes to tables occurs during query results caching.

Results are cached and presented without execution to the user for:

• Repetitous queries
• Queries the have not changed since results cache was built

Summary of Hive ACID considerations

Key things to keep in mind when moving to Hive transactional/ACID tables are:

• Hive is not an online transactional processing (OLTP).
• Micro-batching works best; avoid single inserts.
• Setup the compactor.
• Scale the resources to compact.
• Resource requirements depend on:

• Data volume
• Frequency of data change
• Number of tables/partitions to compact
• The thresholds set to trigger compactions
• The frequency of the compactor checks

132

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/using-hiveql/topics/hive_enable_disable_materialized_rewrite.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/hive-performance-tuning/topics/hive-query-results-cache.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/managing-hive/topics/hive_hive_data_compaction.html

CDP Private Cloud Migrating Hive workloads to ACID

One of your main considerations in whether or not to use a Hive ACID table is who is going to query the table. Hive
has native support for ACID tables and CDP has a security system in place to protect the data.

133

	Contents
	Migrating Hive workloads from CDH
	Changes to CDH Hive Tables
	Configuration changes
	Hive Configuration Property Changes
	Customizing critical Hive configurations
	Setting Hive Configuration Overrides
	Hive Configuration Requirements and Recommendations
	Configuring HMS for high availability
	Setting up Hive metastore for Atlas
	Changing the Hive warehouse location

	Security tasks
	Making the Hive plugin for Ranger visible
	Configuring authorization to tables
	Setting up access control lists
	Configure encryption zone security
	Configure edge nodes as gateways
	Configure HiveServer HTTP mode

	Key syntax changes
	Handling table reference syntax
	LOCATION and MANAGEDLOCATION clauses

	Key semantic changes and workarounds
	Changing incompatible column types
	Understanding CREATE TABLE behavior
	Configuring legacy CREATE TABLE behavior
	Dropping partitions
	Handling the Keyword APPLICATION
	Handling output of greatest and least functions
	Renaming tables
	TRUNCATE TABLE on an external table

	Other syntax and semantic changes
	Syntax and semantic changes CDH 6.2.1 to CDP 7.0.3.2
	Aliasing tables
	ANALYZE TABLE ... COMPUTE STATISTICS PARTIALSCAN removed
	Decimal to string change
	Decimal literals
	hive.stats.collect.rawdatasize removal
	HIVE_SUPPORT_SQL11_RESERVED_KEYWORDS
	Limit scanned partitions
	Overflow handling of decimals
	Functions that changed
	ACOS(2) and ASIN(2) return NULL
	CAST function results
	Casting types with leading or trailing spaces
	CORR and COVAR_SAMP compliant with SQL:2011
	LENGTH function supported data types
	STDDEV_SAMP and VAR_SAMP

	NULL related behaviors
	ORDER BY clause treatment of NULLs
	Disallow enabling/enforcing NOT NULL
	Default NULL ordering change
	Enforcement of NOT NULL constraint

	Timestamp or date related behaviors
	ADD_MONTHS function fix
	ADD_MONTHS date validation
	Casting invalid dates
	FROM_UNIXTIME and UNIX_TIMESTAMP time zone
	Handling of CURRENT_TIMESTAMP output format
	Handling of Julian dates in UDFs
	Handling return type for old date functions
	Support for SQL:2016 datetime formats (limited formats)
	UNIX_TIMESTAMP behavior
	TIMESTAMP based on UTC
	UNIX_TIMESTAMP conversion of TIMESTAMPLOCALTZ

	Semantic changes and workarounds CDP 7.1.1
	NVL UDF implementation changes
	Improved Handling of External Table Inserts in HDFS

	Semantic changes and workarounds CDP 7.1.4
	Exclusive write lock for MERGE INSERT
	Lock implementations to allow zero-wait readers
	UNBOUNDED representation in Window functions
	Support for 0 ROWS PRECEDING or FOLLOWING

	Semantic changes and workarounds CDP 7.1.5
	Sort behavior in SHOW COLUMNS
	Event notification cleanup interval

	Semantic changes and workarounds CDP 7.1.6
	Support for SQL:2016 datetime formats (text, FM, FX)
	Casting Timestamp to numeric and vice-versa
	Handling trailing zeros of decimal constants

	Semantic changes and workarounds CDP 7.1.7
	Precision and scale changes

	Semantic changes and workarounds CDP 7.1.7 SP1
	Date and timestamp parser changes from LENIENT to STRICT
	Date strings are parsed using local timezone

	Semantic changes and workarounds CDP 7.1.7 SP2
	Date and timestamp format changes

	Semantic changes and workarounds CDP 7.1.7 SP2 CHFx
	New property to control datetime formatter
	Dates are parsed by ignoring trailing invalid characters

	Semantic changes and workarounds CDP 7.1.8 CHFx
	Handling table column named default
	Fix precision and scale inference for aggregate rewriting in Calcite

	Migrating Spark Apps
	Preventing SparkSQL incompatibility
	Managed, non-ACID table problem
	Reading a Hive external table in ORC from Spark

	Spark integration with Hive
	Removing Hive on Spark Configurations

	Disabling Partition Type Checking
	Converting Hive CLI scripts to Beeline
	Hive unsupported interfaces and features

	Migrating Hive Workloads from HDP 2.6.5 after an in-place upgrade
	Changes to HDP Hive tables
	Checking and correcting Hive table locations
	Configuration changes
	Hive Configuration Property Changes
	Customizing critical Hive configurations
	Setting Hive Configuration Overrides
	Hive Configuration Requirements and Recommendations
	Configuring HMS for high availability
	Setting up Hive metastore for Atlas
	Changing the Hive warehouse location
	Removing the LLAP Queue

	Security tasks
	Making the Hive plugin for Ranger visible
	Configuring authorization to tables
	Setting up access control lists
	Configure encryption zone security
	Configure edge nodes as gateways
	Configure HiveServer HTTP mode

	Handling syntax changes
	Handling table reference syntax
	LOCATION and MANAGEDLOCATION clauses

	Key semantic changes and workarounds
	Casting timestamps
	Changing incompatible column types
	Understanding CREATE TABLE behavior
	Configuring legacy CREATE TABLE behavior
	Dropping partitions
	Handling output of greatest and least functions
	Renaming tables
	TRUNCATE TABLE on an external table

	Migrating Spark Apps
	Spark integration with Hive

	Identifying and fixing invalid Hive schema versions
	Fixing statistics
	Converting Hive CLI scripts to Beeline
	Hive unsupported interfaces and features

	Replicating Hive data from HDP 3 to CDP
	Replicating Hive data
	Configuring the CDP cluster
	Mandatory CDP policy-level properties
	Optional CDP policy-level properties
	Supported scheduled query operations

	Configuring the HDP cluster
	Mandatory HDP cluster configuration properties
	Mandatory HDP policy-level properties
	Optional HDP policy-level properties

	Configuring wire-encrypted clusters
	Example commands for replicating HDP 3 workloads
	Troubleshooting Hive replication using REPL
	Repl Command Known Issues
	Patches Required on HDP
	Patches required on CDP
	Verifying the Hive data replication
	Setting up the HDP cluster
	Verifying replication
	Handing a failed verification
	Validating external table replication
	Enabling background threads after migration

	Migration paths from HDP 3 to CDP for LLAP users
	Migration paths for Hive users
	Migration to Cloudera Private Cloud Base or CDP Public Cloud
	Migration to Cloudera Data Warehouse
	Apache Tez processing of Hive jobs

	Migration paths for Spark users
	Migration to Cloudera Private Cloud Base
	HWC changes from HDP to CDP

	Migrating Hive workloads from Cloudera Base on premises to Cloudera Data Warehouse on premises
	Planning a Cloudera Data Warehouse Virtual Warehouse instance
	Apache Tez processing of Hive jobs
	Migrate Hive workloads from HDP (LLAP) to Cloudera Data Warehouse (LLAP)
	Migrate from Cloudera Base on premises (Hive on Tez) to Cloudera Data Warehouse (LLAP)

	Migrating Hive workloads to ACID
	Tables in Hive 1 and 2 vs. Hive 3
	Compatible storage formats
	Table design considerations
	Hive ingest patterns introduction
	Classic ingest patterns
	ACID ingest patterns
	Handling government regulations in ACID tables
	Key concepts about ACID ingest patterns

