Using Custom Spark Runtime Docker
Images via API/CLI (Preview)

Date published: 2022-09-06
Date modified: 2023-07-31

© Cloudera Inc. 2022-2023. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual
property rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component
in a particular release.

Cloudera software includes software from various open source or other third party projects, and may be released
under the Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLv3), or other
license terms.

Other software included may be released under the terms of alternative open source licenses. Please review the
license and notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss
your specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no
responsibility nor liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.
Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR

RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION

NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.

WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE

LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED

ON COURSE OF DEALING OR USAGE IN TRADE.

Using Custom Spark Runtime Docker Images via API/CLI (Preview)
Legal Notice

Contents

This is a detailed user guide that demonstrates how to run Spark jobs using custom Spark
runtime Docker images via API/CLI. Custom Spark runtime Docker images are used when
custom packages and libraries need to be installed and used when executing Spark jobs. These
custom packages and libraries can be proprietary software packages like RPMs that need to be
compiled to generate the required binaries. Docker images allow you to pre-bake these
dependencies into a self-contained Docker file that can be used across multiple Spark jobs.

Important: If you’re using Cloudera Data Engineering (CDE) 1.18 and above, you can’t use
Custom Spark Runtime Docker Images with CDE 1.17 and below.

Prerequisites

Entitlement for Customer Docker images

In order to use custom Spark runtime Docker images, your CDP tenant must have the
DE_CUSTOM_RUNTIME entitlement enabled. If not yet in place, this should be requested via
your Cloudera Account Team (primarily your Solution Engineer). They will fulfill the request
internally and confirm to you when the entitlement has been applied. Please allow 24 hours for
fulfillment.

Note that the DE_CUSTOM_RUNTIME entitlement must be enabled before a Virtual Cluster is
created in order to be able to create custom runtime resources within that cluster.

Docker repository credentials

In order to pull the base Docker image, you must have credentials and authenticate your docker
client to docker.repository.cloudera.com. To get credentials:
1. Raise an “Admin” type case with Cloudera Support and request a License Key.
2. Once the License Key is received, navigate to https://www.cloudera.com/downloads.html
and log in with your MyCloudera credentials.
3. Use the Credentials Generator tool - this is about half-way down the page (you will see
an orange “Sign In” button if not already logged in).

Cloudera customers

For all productsinstalled through Cloudera Manager, you may use your license key to generate
repository credentials here. Click below touse the tool:

Credentials generator tool

!

https://www.cloudera.com/downloads.html

As directed on the page, copy and paste the entire contents of your license file into the
text box and press the Get Credentials button to generate your username and password.

Steps

1.

2.

Create a custom Docker image

Build the “custom-spark-dex-runtime” image based on the “dex-spark-runtime” image
of the Cloudera Data Engineering (CDE) version.

The image should be based on the dex-spark-runtime of the current dex version.

The relevant dex-spark-runtime image is
<registry-host>/cloudera/dex/dex-spark-runtime-<spark version>-<cdh version>:<dex version>

Example: DockerFile for DEX 1.15.0-b117, Spark 2.4.8 and CDP Runtime version
7.2.14.0

Unset

FROM
docker.repository.cloudera.com/cloudera/dex/dex-spark-runtime-2.4
.8-7.2.14.0-7.2.14.6:1.15.0-b117

USER root

RUN yum install -y git && yum clean all && rm -rf /var/cache/yum
RUN pip2 install virtualenv-api

RUN pip3 install virtualenv-api

USER S{DEX_UID}

Build the docker image by tagging it with the custom registry and push it to the
custom registry.

Example:

Unset

mac@local:$ docker build --network=host -t

docker .my-company.registry.com/custom-dex/dex-spark-runtime-2.4.8
-7.2.14.06:1.15.0-b117-custom . -f Dockerfile

mac@local:$ docker push
docker .my-company.registry.com/custom-dex/dex-spark-runtime-2.4.8
-7.2.14.0:1.15.0-b117-custom

Here, the custom registry is “docker.my-company.registry.com” and the registry
namespace is “custom-dex”.

3. Create a custom runtime image resource.
Register “custom-spark-dex-runtime” docker image as a resource of type
“custom-runtime-image”.

a. Create a resource for the registries which do not require any authentication.
If using a public docker registry or If the docker registry is in the same
environment, for example, the same AWS account or Azure subscription where
the CDE service is running, then you do not need to create credentials.

CLI

Unset

mac@local:$ cde resource create --name custom-image-resource
--image

docker .my-company.registry.com/custom-dex/dex-spark-runtime-2.4.8
-7.2.14.0:1.15.0-b117-custom --image-engine spark2 --type
custom-runtime-image

Note: To obtain $CDE_TOKEN to execute the REST APl examples, follow the Getting a
Cloudera Data Engineering API access token document.

REST API

Unset

curl -X POST -k 'https://<dex-vc-host>/dex/api/v1/resources \
-H "Authorization: Bearer S{CDE_TOKEN}" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \

http://docs-dev.cloudera.com.s3.amazonaws.com/data-engineering/1.3.3/api-access/topics/cde-api-get-access-token.html
http://docs-dev.cloudera.com.s3.amazonaws.com/data-engineering/1.3.3/api-access/topics/cde-api-get-access-token.html

--data '{
"customRuntimeImage": {
"engine": "spark2",
"image" :
"docker.my-company.registry.com/custom-dex/dex-spark-runtime-2.4.
8-7.2.14.0:1.15.06-b117

-custom”
"name” : "custom-image-resource",
"type": "custom-runtime-image"

Once done, skip to step 4 to submit the job.

b. Create a resource which requires the credentials to access the registry.
Use the command below or the API request to create the credentials. These
credentials are stored as a secret.

CLI

Unset

mac@local:$./cde credential create --name docker-creds --type
docker-basic --docker-server docker-sandbox.infra.cloudera.com
--docker-username my-username

REST API

Unset

curl -X POST -k 'https://<dex-vc-host>/dex/api/v1/credentials’ \
-H "Authorization: Bearer S{CDE_TOKEN}" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \

--data '{
"dockerBasic": {
"password": "passwordi123",

"server": "docker-sandbox.infra.cloudera.com",

"username” : "my-username"”

)i
"name" : "docker-creds",
"type": "docker-basic"

} 1
C. Register “custom-spark-dex-runtime” docker image as a resource of type
“custom-runtime-image” by specifying the name of the credential created above.
CLI

Unset

mac@local:$./cde resource create --name custom-image-resource
--image
docker.my-company.registry.com/custom-dex/dex-spark-runtime-2.4.8
-7.2.14.0:1.15.0-b117

-custom --image-engine spark2 --type custom-runtime-image
--image-credential docker-creds

REST API

Unset

curl -X POST -k 'https://<dex-vc-host>/dex/api/v1/resources \
-H "Authorization: Bearer S{CDE_TOKEN}" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \

--data ‘H{
"customRuntimeImage" : {
“credential”: "docker-creds",
"engine": "spark2",
"image" :

"docker.my-company.registry.com/custom-dex/dex-spark-runtime-2.4.
8-7.2.14.0:1.15.06-b117

-custom”
"name” : "custom-image-resource",
"type": "custom-runtime-image"

4. Submit a job by setting the “custom-spark-dex-runtime” image as a resource using
the CDE CLI.

SPARK COMMAND

Unset

mac@local:$./cde --user cdpuserl1 spark submit
/Users/my-username/spark-examples_2.11-2.4.4.jar
--class org.apache.spark.examples.SparkPi 1000
--runtime-image-resource-name=custom-image-resource

JOB COMMAND

Unset

mac@local:$./cde --user cdpuser1 resource create --name
spark-jar

mac@local:$./cde --user cdpuserl resource upload --name
spark-jar --local-path spark-examples_2.11-2.4.4.jar
mac@local:$./cde --user cdpuser1l job create --name
spark-pi-job-cli --type spark --mount-1-resource spark-jar
--application-file spark-examples_2.11-2.4.4.jar --class
org.apache.spark.examples.SparkPi --user cdpuser1 --arg 22
--runtime-image-resource-name custom-image-resource

5. The spark driver/executor pods should use this image and you can confirm it by
opening a shell into those pods and verifying if the external installed libraries or
files exist.

Accessing ECR repository from different AWS
environments

Use Case:

There are separate AWS environments for different business units and there is an ECR
repository which contains the common docker images that needs to be accessed from these
environments (having different AWS accounts).

By default, The ECR will be accessible to the AWS services running in the same AWS
environment. The same ECR can be accessed from different AWS environments by updating
the ECR repository permissions.

For Example :

- ECRrepository is in envl (AWS-ACCOUNT-1)
- Sales Team services are running in env2 (AWS-ACCOUNT-2)
- Finance Team services are running in env3 (AWS-ACCOUNT-3)

Below steps can be followed to update the ECR permissions to allow the access for both Sales
and Finance teams’ services.

Steps:

1. Login into AWS console and open the desired ECR repository.
2. Click on the Permissions tab.

Amazon Elastic X Amazon ECR » Repositories » custom-spark-runtime » Permissions

Container Registry
Permissions Edit

Private registry

Public registry

Statements
Repositories
Summary
Images No statements
You don't have any permission statements for this repository.
Permissions

Lifecycle Policy

Repository tags

Getting started [4
Documentation [4

Public gallery [4

3. Click on Edit Policy Json. This will show you the current JSON policy document for the
repository.

Search tabs x

Edit JSON

{
"Version": "2012-10-17",
"Statement": []

}

Close Save

4. Modify the current JSON policy document by adding a new statement. If the repository
has no permissions set yet then you can simply copy and paste the below JSON policy
document (Update the required AWS account ids in this document)

Unset
{
“Version": "2012-10-17",
"Statement": [
{

"Sid": "crossAccountAllowRead",
"Effect": "Allow",
"Principal”: {
"AWS": [
"arn:aws:iam: :<AWS-ACCOUNT-2>:root",
"arn:aws:iam: :<AWS-ACCOUNT-3>:root"
]
b
"Action": [
"ecr:BatchChecklLayerAvailability",
"ecr:BatchGetImage",
"ecr:DescribeImages”,
“ecr:GetDownloadUrlForlLayer",
"ecr:ListImages”

5. Click on Save button.
6. Verify If the policy has been set successfully by clicking on the Permissions tab again.
The new permissions and the AWS accounts IDs should be there.

Note : Ensure the AWS account IDs are correct otherwise you may see errors while saving the
policy.

Once the permissions are set successfully on ECR for different AWS accounts then the services
running in these AWS environments can access the ECR without any changes in the services or
environment itself. There is no need to provide any credentials to access the ECR from these
AWS accounts.

Troubleshooting

Error: Custom image resource with missing or wrong credentials

Creating a custom image resource with missing or wrong credentials should result in the below
error which can be seen in the logs or in Kubernetes pod events.

Example

Unset

Failed to pull image
"docker.my-company.registry.com/custom-dex/dex-spark-runtime-2.4.
8-7.2.14.0:1.15.0-b117-custom" :

rpc error: code = Unknown desc = Error reading manifest
1.15.0-b117-custom in

docker .my-company.registry.com/custom-dex/dex-spark-runtime-2.4.8
-7.2.14.0:errors: denied: requested access to the resource is
denied unauthorized: authentication required

