
Spark Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: CDH 5.7.x
Date: February 3, 2021

Table of Contents

Apache Spark Overview...5

Running Your First Spark Application..6

Spark Application Overview...8
Spark Application Model..8

Spark Execution Model..8

Developing Spark Applications...9
Developing and Running a Spark WordCount Application...9

Using Spark Streaming...13
Spark Streaming and Dynamic Allocation..13

Spark Streaming Example..13

Enabling Fault-Tolerant Processing in Spark Streaming...15

Configuring Authentication for Long-Running Spark Streaming Jobs..16

Using Spark SQL..16
SQLContext and HiveContext..16

Querying Files Into a DataFrame...17

Spark SQL Example..17

Ensuring HiveContext Enforces Secure Access..19

Interaction with Hive Views...19

Performance and Storage Considerations for Spark SQL DROP TABLE PURGE..19

Using Spark MLlib...20
Running a Spark MLlib Example...20

Enabling Native Acceleration For MLlib...20

Accessing External Storage from Spark..21
Accessing Compressed Files...21

Accessing Data Stored in Amazon S3 through Spark...21

Accessing Avro Data Files From Spark SQL Applications..23

Accessing Parquet Files From Spark SQL Applications...27

Building Spark Applications..28
Building Applications...28

Building Reusable Modules..28

Packaging Different Versions of Libraries with an Application..30

Configuring Spark Applications..30

Configuring Spark Application Properties in spark-defaults.conf..31

Configuring Spark Application Logging Properties..32

Running Spark Applications..33
Submitting Spark Applications...33

spark-submit Options...34

Cluster Execution Overview...35

Running Spark Applications on YARN...35
Deployment Modes..35

Configuring the Environment...37

Running a Spark Shell Application on YARN...37

Submitting Spark Applications to YARN...38

Monitoring and Debugging Spark Applications...38

Example: Running SparkPi on YARN...38

Configuring Spark on YARN Applications...39

Dynamic Allocation..39

Optimizing YARN Mode in Unmanaged CDH Deployments...40

Using PySpark...40
Running Spark Python Applications...41

Spark and IPython and Jupyter Notebooks..43

Tuning Spark Applications..44

Spark and Hadoop Integration..51
Accessing HBase from Spark..51

Accessing Hive from Spark...51

Running Spark Jobs from Oozie..52

Building and Running a Crunch Application with Spark...52

Appendix: Apache License, Version 2.0...53

Apache Spark Overview

Apache Spark is a general framework for distributed computing that offers high performance for both batch and
interactive processing. It exposes APIs for Java, Python, and Scala and consists of Spark core and several related projects:

• Spark SQL - Module for working with structured data. Allows you to seamlessly mix SQL queries with Spark
programs.

• Spark Streaming - API that allows you to build scalable fault-tolerant streaming applications.
• MLlib - API that implements common machine learning algorithms.
• GraphX - API for graphs and graph-parallel computation.

You can run Spark applications locally or distributed across a cluster, either by using an interactive shell or by submitting
an application. Running Spark applications interactively is commonly performed during the data-exploration phase
and for ad hoc analysis.

To run applications distributed across a cluster, Spark requires a cluster manager. Cloudera supports two cluster
managers: YARN and Spark Standalone. When run on YARN, Spark application processes are managed by the YARN
ResourceManager and NodeManager roles. When run on Spark Standalone, Spark application processes are managed
by Spark Master and Worker roles.

Note:

This page contains information related to Spark 1.6, which is includedwith CDH. For information about
the separately available parcel for CDS 2 Powered by Apache Spark, see the documentation for CDS
2.

Unsupported Features

The following Spark features are not supported:

• Spark SQL:

– Thrift JDBC/ODBC server
– Spark SQL CLI

• Spark Dataset API
• SparkR
• GraphX
• Spark on Scala 2.11
• Mesos cluster manager

Related Information

• Managing Spark
• Monitoring Spark Applications
• Spark Authentication
• Spark EncryptionSpark Encryption
• Cloudera Spark forum
• Apache Spark documentation

Spark Guide | 5

Apache Spark Overview

http://spark.apache.org/
http://spark.apache.org/sql/
http://spark.apache.org/streaming/
http://spark.apache.org/mllib/
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/glossaries.html#glossary__glos_apache_mahout
http://spark.apache.org/graphx/
https://www.cloudera.com/documentation/spark2/latest/topics/spark2.html
https://www.cloudera.com/documentation/spark2/latest/topics/spark2.html
http://www.cloudera.com/documentation/enterprise/latest/topics/admin_spark.html
http://www.cloudera.com/documentation/enterprise/latest/topics/operation_spark_applications.html
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_spark_auth.html
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_spark_encryption.html
http://community.cloudera.com/t5/Advanced-Analytics-Apache-Spark/bd-p/Spark
https://spark.apache.org/docs/1.6.0/

Running Your First Spark Application

The simplest way to run a Spark application is by using the Scala or Python shells.

Important:

By default, CDH is configured to permit any user to access the Hive Metastore. However, if you have
modified the value set for the configuration propertyhadoop.proxyuser.hive.groups, your Spark
applicationmight throw exceptions when it is run. To address this issue,make sure you add the groups
that contain the Spark users that you want to have access to the metastore when Spark applications
are run to this property.

1. To start one of the shell applications, run one of the following commands:

• Scala:

$ SPARK_HOME/bin/spark-shell
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version ...
 /_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_67)
Type in expressions to have them evaluated.
Type :help for more information
...
SQL context available as sqlContext.

scala>

• Python:

$ SPARK_HOME/bin/pyspark
Python 2.6.6 (r266:84292, Jul 23 2015, 15:22:56)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-11)] on linux2
Type "help", "copyright", "credits" or "license" for more information
...
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version ...
 /_/

Using Python version 2.6.6 (r266:84292, Jul 23 2015 15:22:56)
SparkContext available as sc, HiveContext available as sqlContext.
>>>

In a CDH deployment, SPARK_HOME defaults to /usr/lib/spark in package installations and
/opt/cloudera/parcels/CDH/lib/spark in parcel installations. In a Cloudera Manager deployment, the
shells are also available from /usr/bin.

For a complete list of shell options, run spark-shell or pyspark with the -h flag.

2. To run the classic Hadoop word count application, copy an input file to HDFS:

$ hdfs dfs -put input

3. Within a shell, run theword count application using the following code examples, substituting for namenode_host,
path/to/input, and path/to/output:

6 | Spark Guide

Running Your First Spark Application

• Scala

scala> val myfile = sc.textFile("hdfs://namenode_host:8020/path/to/input")
scala> val counts = myfile.flatMap(line => line.split(" ")).map(word => (word,
1)).reduceByKey(_ + _)
scala> counts.saveAsTextFile("hdfs://namenode:8020/path/to/output")

• Python

>>> myfile = sc.textFile("hdfs://namenode_host:8020/path/to/input")
>>> counts = myfile.flatMap(lambda line: line.split(" ")).map(lambda word: (word,
1)).reduceByKey(lambda v1,v2: v1 + v2)
>>> counts.saveAsTextFile("hdfs://namenode:8020/path/to/output")

Spark Guide | 7

Running Your First Spark Application

Spark Application Overview

Spark Application Model
Apache Spark is widely considered to be the successor to MapReduce for general purpose data processing on Apache
Hadoop clusters. Like MapReduce applications, each Spark application is a self-contained computation that runs
user-supplied code to compute a result. As with MapReduce jobs, Spark applications can use the resources of multiple
hosts. However, Spark has many advantages over MapReduce.

In MapReduce, the highest-level unit of computation is a job. A job loads data, applies a map function, shuffles it,
applies a reduce function, andwrites data back out to persistent storage. In Spark, the highest-level unit of computation
is an application. A Spark application can be used for a single batch job, an interactive session with multiple jobs, or a
long-lived server continually satisfying requests. A Spark job can consist of more than just a single map and reduce.

MapReduce starts a process for each task. In contrast, a Spark application can have processes running on its behalf
even when it's not running a job. Furthermore, multiple tasks can run within the same executor. Both combine to
enable extremely fast task startup time as well as in-memory data storage, resulting in orders of magnitude faster
performance over MapReduce.

Spark Execution Model
Spark application execution involves runtime concepts such as driver, executor, task, job, and stage. Understanding
these concepts is vital for writing fast and resource efficient Spark programs.

At runtime, a Spark application maps to a single driver process and a set of executor processes distributed across the
hosts in a cluster.

The driver process manages the job flow and schedules tasks and is available the entire time the application is running.
Typically, this driver process is the same as the client process used to initiate the job, although when run on YARN, the
driver can run in the cluster. In interactive mode, the shell itself is the driver process.

The executors are responsible for performing work, in the form of tasks, as well as for storing any data that you cache.
Executor lifetime depends on whether dynamic allocation is enabled. An executor has a number of slots for running
tasks, and will run many concurrently throughout its lifetime.

Invoking an action inside a Spark application triggers the launch of a job to fulfill it. Spark examines the dataset on
which that action depends and formulates an execution plan. The execution plan assembles the dataset transformations
into stages. A stage is a collection of tasks that run the same code, each on a different subset of the data.

8 | Spark Guide

Spark Application Overview

http://vision.cloudera.com/spark-is-the-new-workhorse-of-data-processing-on-hadoop/

Developing Spark Applications

When you are ready to move beyond running core Spark applications in an interactive shell, you need best practices
for building, packaging, and configuring applications and using the more advanced APIs. This section describes:

• How to develop, package, and run Spark applications.
• Aspects of using Spark APIs beyond core Spark.
• How to access data stored in various file formats, such as Parquet and Avro.
• How to access data stored in cloud storage systems, such as Amazon S3.
• Best practices in building and configuring Spark applications.

Developing and Running a Spark WordCount Application
This tutorial describes how to write, compile, and run a simple Spark word count application in three of the languages
supported by Spark: Scala, Python, and Java. The Scala and Java code was originally developed for a Cloudera tutorial
written by Sandy Ryza.

Writing the Application

The example application is an enhanced version of WordCount, the canonical MapReduce example. In this version of
WordCount, the goal is to learn the distribution of letters in the most popular words in a corpus. The application:

1. Creates a SparkConf and SparkContext. A Spark application corresponds to an instance of the SparkContext
class. When running a shell, the SparkContext is created for you.

2. Gets a word frequency threshold.
3. Reads an input set of text documents.
4. Counts the number of times each word appears.
5. Filters out all words that appear fewer times than the threshold.
6. For the remaining words, counts the number of times each letter occurs.

InMapReduce, this requires twoMapReduce applications, as well as persisting the intermediate data to HDFS between
them. In Spark, this application requires about 90 percent fewer lines of code than one developed using theMapReduce
API.

Here are three versions of the program:

• Figure 1: Scala WordCount on page 9
• Figure 2: Python WordCount on page 10
• Figure 3: Java 7 WordCount on page 10

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object SparkWordCount {
 def main(args: Array[String]) {
 // create Spark context with Spark configuration
 val sc = new SparkContext(new SparkConf().setAppName("Spark Count"))

 // get threshold
 val threshold = args(1).toInt

 // read in text file and split each document into words
 val tokenized = sc.textFile(args(0)).flatMap(_.split(" "))

 // count the occurrence of each word
 val wordCounts = tokenized.map((_, 1)).reduceByKey(_ + _)

Spark Guide | 9

Developing Spark Applications

https://github.com/sryza/simplesparkapp
http://wiki.apache.org/hadoop/WordCount
http://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.SparkConf
http://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.SparkContext

 // filter out words with fewer than threshold occurrences
 val filtered = wordCounts.filter(_._2 >= threshold)

 // count characters
 val charCounts = filtered.flatMap(_._1.toCharArray).map((_, 1)).reduceByKey(_ + _)

 System.out.println(charCounts.collect().mkString(", "))
 }
}

Figure 1: Scala WordCount

import sys

from pyspark import SparkContext, SparkConf

if __name__ == "__main__":

 # create Spark context with Spark configuration
 conf = SparkConf().setAppName("Spark Count")
 sc = SparkContext(conf=conf)

 # get threshold
 threshold = int(sys.argv[2])

 # read in text file and split each document into words
 tokenized = sc.textFile(sys.argv[1]).flatMap(lambda line: line.split(" "))

 # count the occurrence of each word
 wordCounts = tokenized.map(lambda word: (word, 1)).reduceByKey(lambda v1,v2:v1 +v2)

 # filter out words with fewer than threshold occurrences
 filtered = wordCounts.filter(lambda pair:pair[1] >= threshold)

 # count characters
 charCounts = filtered.flatMap(lambda pair:pair[0]).map(lambda c: c).map(lambda c: (c,
 1)).reduceByKey(lambda v1,v2:v1 +v2)

 list = charCounts.collect()
 print repr(list)[1:-1]

Figure 2: Python WordCount

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.SparkConf;
import scala.Tuple2;

public class JavaWordCount {
 public static void main(String[] args) {

 // create Spark context with Spark configuration
 JavaSparkContext sc = new JavaSparkContext(new SparkConf().setAppName("Spark Count"));

 // get threshold
 final int threshold = Integer.parseInt(args[1]);

 // read in text file and split each document into words
 JavaRDD<String> tokenized = sc.textFile(args[0]).flatMap(
 new FlatMapFunction() {
 public Iterable call(String s) {
 return Arrays.asList(s.split(" "));
 }
 }
);

10 | Spark Guide

Developing Spark Applications

 // count the occurrence of each word
 JavaPairRDD<String, Integer> counts = tokenized.mapToPair(
 new PairFunction() {
 public Tuple2 call(String s) {
 return new Tuple2(s, 1);
 }
 }
).reduceByKey(
 new Function2() {
 public Integer call(Integer i1, Integer i2) {
 return i1 + i2;
 }
 }
);

 // filter out words with fewer than threshold occurrences
 JavaPairRDD<String, Integer> filtered = counts.filter(
 new Function, Boolean>() {
 public Boolean call(Tuple2 tup) {
 return tup._2 >= threshold;
 }
 }
);

 // count characters
 JavaPairRDD<Character, Integer> charCounts = filtered.flatMap(
 new FlatMapFunction<Tuple2<String, Integer>, Character>() {
 @Override
 public Iterable<Character> call(Tuple2<String, Integer> s) {
 Collection<Character> chars = new ArrayList<Character>(s._1().length());
 for (char c : s._1().toCharArray()) {
 chars.add(c);
 }
 return chars;
 }
 }
).mapToPair(
 new PairFunction<Character, Character, Integer>() {
 @Override
 public Tuple2<Character, Integer> call(Character c) {
 return new Tuple2<Character, Integer>(c, 1);
 }
 }
).reduceByKey(
 new Function2<Integer, Integer, Integer>() {
 @Override
 public Integer call(Integer i1, Integer i2) {
 return i1 + i2;
 }
 }
);

 System.out.println(charCounts.collect());
 }
}

Figure 3: Java 7 WordCount

Because Java 7 does not support anonymous functions, this Java program is considerably more verbose than Scala and
Python, but still requires a fraction of the code needed in an equivalentMapReduce program. Java 8 supports anonymous
functions and their use can further streamline the Java application.

Compiling and Packaging the Scala and Java Applications

The tutorial uses Maven to compile and package the Scala and Java programs. Excerpts of the tutorial pom.xml are
included below. For best practices using Maven to build Spark applications, see Building Spark Applications on page
28.

Spark Guide | 11

Developing Spark Applications

http://blog.cloudera.com/blog/2014/04/making-apache-spark-easier-to-use-in-java-with-java-8/
https://raw.githubusercontent.com/sryza/simplesparkapp/master/pom.xml

To compile Scala, include the Scala tools plug-in:

<plugin>
 <groupId>org.scala-tools</groupId>
 <artifactId>maven-scala-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

which requires the scala-tools plug-in repository:

<pluginRepositories>
<pluginRepository>
 <id>scala-tools.org</id>
 <name>Scala-tools Maven2 Repository</name>
 <url>http://scala-tools.org/repo-releases</url>
 </pluginRepository>
</pluginRepositories>

Also, include Scala and Spark as dependencies:

<dependencies>
 <dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>2.10.2</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.10</artifactId>
 <version>1.6.0-cdh5.7.0</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

To generate the application JAR, run:

$ mvn package

to create sparkwordcount-1.0-SNAPSHOT-jar-with-dependencies.jar in the target directory.

Running the Application

1. The input to the application is a large text file in which each line contains all the words in a document, stripped
of punctuation. Put an input file in a directory on HDFS. You can use tutorial example input file:

$ wget --no-check-certificate .../inputfile.txt
$ hdfs dfs -put inputfile.txt

2. Run one of the applications using spark-submit:

• Scala - Run in a local process with threshold 2:

$ spark-submit --class com.cloudera.sparkwordcount.SparkWordCount \
--master local --deploy-mode client --executor-memory 1g \
--name wordcount --conf "spark.app.id=wordcount" \

12 | Spark Guide

Developing Spark Applications

https://raw.githubusercontent.com/sryza/simplesparkapp/master/data/inputfile.txt

sparkwordcount-1.0-SNAPSHOT-jar-with-dependencies.jar
hdfs://namenode_host:8020/path/to/inputfile.txt 2

If you use the example input file, the output should look something like:

(e,6), (p,2), (a,4), (t,2), (i,1), (b,1), (u,1), (h,1), (o,2), (n,4), (f,1), (v,1),
(r,2), (l,1), (c,1)

• Java - Run in a local process with threshold 2:

$ spark-submit --class com.cloudera.sparkwordcount.JavaWordCount \
--master local --deploy-mode client --executor-memory 1g \
--name wordcount --conf "spark.app.id=wordcount" \
sparkwordcount-1.0-SNAPSHOT-jar-with-dependencies.jar
hdfs://namenode_host:8020/path/to/inputfile.txt 2

If you use the example input file, the output should look something like:

(e,6), (p,2), (a,4), (t,2), (i,1), (b,1), (u,1), (h,1), (o,2), (n,4), (f,1), (v,1),
(r,2), (l,1), (c,1)

• Python - Run on YARN with threshold 2:

$ spark-submit --master yarn --deploy-mode client --executor-memory 1g \
--name wordcount --conf "spark.app.id=wordcount" wordcount.py
hdfs://namenode_host:8020/path/to/inputfile.txt 2

In this case, the output should look something like:

[(u'a', 4), (u'c', 1), (u'e', 6), (u'i', 1), (u'o', 2), (u'u', 1), (u'b', 1), (u'f',
1), (u'h', 1), (u'l', 1), (u'n', 4), (u'p', 2), (u'r', 2), (u't', 2), (u'v', 1)]

Using Spark Streaming
Spark Streaming is an extension of core Spark that enables scalable, high-throughput, fault-tolerant processing of data
streams. Spark Streaming receives input data streams and divides the data into batches called DStreams. DStreams
can be created either from sources such as Kafka, Flume, and Kinesis, or by applying operations on other DStreams.
Every input DStream is associated with a Receiver, which receives the data from a source and stores it in executor
memory.

For detailed information on Spark Streaming, see Spark Streaming Programming Guide.

Spark Streaming and Dynamic Allocation

Starting with CDH 5.5, dynamic allocation is enabled by default, which means that executors are removed when idle.
However, dynamic allocation is not effective in Spark Streaming. In Spark Streaming, data comes in every batch, and
executors run whenever data is available. If the executor idle timeout is less than the batch duration, executors are
constantly being added and removed. However, if the executor idle timeout is greater than the batch duration, executors
are never removed. Therefore, Cloudera recommends that you disable dynamic allocation by setting
spark.dynamicAllocation.enabled to false when running streaming applications.

Spark Streaming Example

This example uses Kafka to deliver a stream of words to a Python word count program.

1. Install Kafka and create a Kafka service.

Spark Guide | 13

Developing Spark Applications

https://spark.apache.org/docs/1.6.0/streaming-programming-guide.html
http://www.cloudera.com/documentation/kafka/latest/topics/kafka_installing.html

2. Create a Kafka topic wordcounttopic and pass in your ZooKeeper server:

$ kafka-topics --create --zookeeper zookeeper_server:2181 --topic wordcounttopic \
--partitions 1 --replication-factor 1

3. Create a Kafka word count Python program adapted from the Spark Streaming example kafka_wordcount.py. This
version divides the input stream into batches of 10 seconds and counts the words in each batch:

from __future__ import print_function

import sys

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils

if __name__ == "__main__":
 if len(sys.argv) != 3:
 print("Usage: kafka_wordcount.py <zk> <topic>", file=sys.stderr)
 exit(-1)

 sc = SparkContext(appName="PythonStreamingKafkaWordCount")
 ssc = StreamingContext(sc, 10)

 zkQuorum, topic = sys.argv[1:]
 kvs = KafkaUtils.createStream(ssc, zkQuorum, "spark-streaming-consumer", {topic:
1})
 lines = kvs.map(lambda x: x[1])
 counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word,
1)).reduceByKey(lambda a, b: a+b)
 counts.pprint()

 ssc.start()
 ssc.awaitTermination()

4. Submit the application using spark-submitwith dynamic allocation disabled and pass in your ZooKeeper server
and topic wordcounttopic. To run locally, you must specify at least two worker threads: one to receive and one
to process data.

$ spark-submit --master local[2] --conf "spark.dynamicAllocation.enabled=false" \
--jars SPARK_HOME/lib/spark-examples.jar kafka_wordcount.py \
zookeeper_server:2181 wordcounttopic

In a CDH deployment, SPARK_HOME defaults to /usr/lib/spark in package installations and
/opt/cloudera/parcels/CDH/lib/spark in parcel installations. In a Cloudera Manager deployment, the
shells are also available from /usr/bin.

Alternatively, you can run on YARN as follows:

$ spark-submit --master yarn --deploy-mode client --conf
"spark.dynamicAllocation.enabled=false" \
--jars SPARK_HOME/lib/spark-examples.jar kafka_wordcount.py \
zookeeper_server:2181 wordcounttopic

5. In another window, start a Kafka producer that publishes to wordcounttopic:

$ kafka-console-producer --broker-list kafka_broker:9092 --topic wordcounttopic

6. In the producer window, type the following:

hello
hello
hello
hello
hello
hello

14 | Spark Guide

Developing Spark Applications

https://raw.githubusercontent.com/apache/spark/branch-1.6/examples/src/main/python/streaming/kafka_wordcount.py

gb
gb
gb
gb
gb
gb

Depending on how fast you type, in the Spark Streaming application window you will see output like:

Time: 2016-01-06 14:18:00

(u'hello', 6)
(u'gb', 2)

Time: 2016-01-06 14:18:10

(u'gb', 4)

Enabling Fault-Tolerant Processing in Spark Streaming

If the driver host for a Spark Streaming application fails, it can lose data that has been received but not yet processed.
To ensure that no data is lost, you can use Spark Streaming recovery. Sparkwrites incoming data to HDFS as it is received
and uses this data to recover state if a failure occurs.

To enable Spark Streaming recovery:

1. Set thespark.streaming.receiver.writeAheadLog.enable parameter totrue in theSparkConf object.
2. Create a StreamingContext instance using this SparkConf, and specify a checkpoint directory.
3. Use the getOrCreatemethod in StreamingContext to either create a new context or recover from an old

context from the checkpoint directory:

from __future__ import print_function

import sys

from pyspark import SparkContext, SparkConf
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils

checkpoint = "hdfs://ns1/user/systest/checkpoint"

Function to create and setup a new StreamingContext
def functionToCreateContext():

 sparkConf = SparkConf()
 sparkConf.set("spark.streaming.receiver.writeAheadLog.enable", "true")
 sc = SparkContext(appName="PythonStreamingKafkaWordCount",conf=sparkConf)
 ssc = StreamingContext(sc, 10)

 zkQuorum, topic = sys.argv[1:]
 kvs = KafkaUtils.createStream(ssc, zkQuorum, "spark-streaming-consumer", {topic: 1})
 lines = kvs.map(lambda x: x[1])
 counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word,
1)).reduceByKey(lambda a, b: a+b)
 counts.pprint()

 ssc.checkpoint(checkpoint) # set checkpoint directory
 return ssc

if __name__ == "__main__":
 if len(sys.argv) != 3:
 print("Usage: kafka_wordcount.py <zk> <topic>", file=sys.stderr)
 exit(-1)

 ssc = StreamingContext.getOrCreate(checkpoint, lambda: functionToCreateContext())

Spark Guide | 15

Developing Spark Applications

 ssc.start()
 ssc.awaitTermination()

For more information, see Checkpointing.

To prevent data loss if a receiver fails, receivers must be able to replay data from the original data sources if required.

• The Kafka receiver automatically replays if the spark.streaming.receiver.writeAheadLog.enable
parameter is set to true.

• The receiverless Direct Kafka DStream does not require the
spark.streaming.receiver.writeAheadLog.enable parameter and can function without data loss, even
without Streaming recovery.

• Both Flume receivers packaged with Spark replay the data automatically on receiver failure.

For more information, see Spark Streaming + Kafka Integration Guide and Spark Streaming + Flume Integration Guide.

Configuring Authentication for Long-Running Spark Streaming Jobs

If you are using authenticated Spark communication, youmust perform additional configuration steps for long-running
Spark Streaming jobs. See Configuring Spark on YARN for Long-running Applications.

Using Spark SQL
Spark SQL lets you query structured data inside Spark programs using either SQL or using the DataFrame API.

For detailed information on Spark SQL, see the Spark SQL and DataFrame Guide.

SQLContext and HiveContext

The entry point to all Spark SQL functionality is the SQLContext class or one of its descendants. You create a
SQLContext from a SparkContext. With an SQLContext, you can create a DataFrame from an RDD, a Hive table,
or a data source.

To work with data stored in Hive or Impala tables from Spark applications, construct a HiveContext, which inherits
fromSQLContext.With aHiveContext, you can access Hive or Impala tables represented in themetastore database.

Note:

Hive and Impala tables and related SQL syntax are interchangeable in most respects. Because Spark
uses the underlying Hive infrastructure, with Spark SQL you write DDL statements, DML statements,
and queries using the HiveQL syntax. For interactive query performance, you can access the same
tables through Impala using impala-shell or the Impala JDBC and ODBC interfaces.

If you use spark-shell, a HiveContext is already created for you and is available as the sqlContext variable.

If you use spark-submit, use code like the following at the start of the program:

Python:

from pyspark import SparkContext, HiveContext
sc = SparkContext(appName = "test")
sqlContext = HiveContext(sc)

The host from which the Spark application is submitted or on which spark-shell or pyspark runs must have a Hive
gateway role defined in Cloudera Manager and client configurations deployed.

When a Spark job accesses a Hive view, Spark must have privileges to read the data files in the underlying Hive tables.
Currently, Spark cannot use fine-grained privileges based on the columns or the WHERE clause in the view definition.

16 | Spark Guide

Developing Spark Applications

https://spark.apache.org/docs/1.6.0/streaming-programming-guide.html#checkpointing
https://spark.apache.org/docs/1.6.0/streaming-kafka-integration.html
https://spark.apache.org/docs/1.6.0/streaming-flume-integration.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_yarn_long_jobs.html
https://spark.apache.org/docs/1.6.0/sql-programming-guide.html
https://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.sql.SQLContext

If Spark does not have the required privileges on the underlying data files, a SparkSQL query against the view returns
an empty result set, rather than an error.

Querying Files Into a DataFrame

If you have data files that are outside of a Hive or Impala table, you can use SQL to directly read JSON or Parquet files
into a DataFrame:

• JSON:

df = sqlContext.sql("SELECT * FROM json.`input dir`")

• Parquet:

df = sqlContext.sql("SELECT * FROM parquet.`input dir`")

See Running SQL on Files.

Spark SQL Example

This example demonstrates how to use sqlContext.sql to create and load two tables and select rows from the
tables into two DataFrames. The next steps use the DataFrame API to filter the rows for salaries greater than 150,000
from one of the tables and shows the resulting DataFrame. Then the two DataFrames are joined to create a third
DataFrame. Finally the new DataFrame is saved to a Hive table.

1. At the command line, copy the Hue sample_07 and sample_08 CSV files to HDFS:

$ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_07.csv /user/hdfs
$ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_08.csv /user/hdfs

whereHUE_HOME defaults to /opt/cloudera/parcels/CDH/lib/hue (parcel installation) or /usr/lib/hue
(package installation).

2. Start spark-shell:

$ spark-shell

3. Create Hive tables sample_07 and sample_08:

scala> sqlContext.sql("CREATE TABLE sample_07 (code string,description string,total_emp
 int,salary int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TextFile")
scala> sqlContext.sql("CREATE TABLE sample_08 (code string,description string,total_emp
 int,salary int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TextFile")

4. In Beeline, show the Hive tables:

[0: jdbc:hive2://hostname.com:> show tables;
+------------+--+
| tab_name |
+------------+--+
| sample_07 |
| sample_08 |
+------------+--+

5. Load the data in the CSV files into the tables:

scala> sqlContext.sql("LOAD DATA INPATH '/user/hdfs/sample_07.csv' OVERWRITE INTO TABLE
 sample_07")
scala> sqlContext.sql("LOAD DATA INPATH '/user/hdfs/sample_08.csv' OVERWRITE INTO TABLE
 sample_08")

Spark Guide | 17

Developing Spark Applications

http://spark.apache.org/docs/1.6.0/sql-programming-guide.html#run-sql-on-files-directly

6. Create DataFrames containing the contents of the sample_07 and sample_08 tables:

scala> val df_07 = sqlContext.sql("SELECT * from sample_07")
scala> val df_08 = sqlContext.sql("SELECT * from sample_08")

7. Show all rows in df_07 with salary greater than 150,000:

scala> df_07.filter(df_07("salary") > 150000).show()

The output should be:

+-------+--------------------+---------+------+
| code| description|total_emp|salary|
+-------+--------------------+---------+------+
11-1011	Chief executives	299160	151370
29-1022	Oral and maxillof...	5040	178440
29-1023	Orthodontists	5350	185340
29-1024	Prosthodontists	380	169360
29-1061	Anesthesiologists	31030	192780
29-1062	Family and genera...	113250	153640
29-1063	Internists, general	46260	167270
29-1064	Obstetricians and...	21340	183600
29-1067	Surgeons	50260	191410
29-1069	Physicians and su...	237400	155150
+-------+--------------------+---------+------+

8. Create the DataFrame df_09 by joining df_07 and df_08, retaining only the code and description columns.

scala> val df_09 = df_07.join(df_08, df_07("code") ===
df_08("code")).select(df_07.col("code"),df_07.col("description"))
scala> df_09.show()

The new DataFrame looks like:

+-------+--------------------+
| code| description|
+-------+--------------------+
00-0000	All Occupations
11-0000	Management occupa...
11-1011	Chief executives
11-1021	General and opera...
11-1031	Legislators
11-2011	Advertising and p...
11-2021	Marketing managers
11-2022	Sales managers
11-2031	Public relations ...
11-3011	Administrative se...
11-3021	Computer and info...
11-3031	Financial managers
11-3041	Compensation and ...
11-3042	Training and deve...
11-3049	Human resources m...
11-3051	Industrial produc...
11-3061	Purchasing managers
11-3071	Transportation, s...
11-9011	Farm, ranch, and ...
11-9012	Farmers and ranchers
+-------+--------------------+

9. Save DataFrame df_09 as the Hive table sample_09:

scala> df_09.write.saveAsTable("sample_09")

10. In Beeline, show the Hive tables:

[0: jdbc:hive2://hostname.com:> show tables;
+------------+--+

18 | Spark Guide

Developing Spark Applications

| tab_name |
+------------+--+
| sample_07 |
| sample_08 |
| sample_09 |
+------------+--+

The equivalent program in Python, that you could submit using spark-submit, would be:

from pyspark import SparkContext, SparkConf, HiveContext

if __name__ == "__main__":

 # create Spark context with Spark configuration
 conf = SparkConf().setAppName("Data Frame Join")
 sc = SparkContext(conf=conf)
 sqlContext = HiveContext(sc)
 df_07 = sqlContext.sql("SELECT * from sample_07")
 df_07.filter(df_07.salary > 150000).show()
 df_08 = sqlContext.sql("SELECT * from sample_08")
 tbls = sqlContext.sql("show tables")
 tbls.show()
 df_09 = df_07.join(df_08, df_07.code == df_08.code).select(df_07.code,df_07.description)

 df_09.show()
 df_09.write.saveAsTable("sample_09")
 tbls = sqlContext.sql("show tables")
 tbls.show()

Instead of displaying the tables using Beeline, the show tables query is run using the Spark SQL API.

Ensuring HiveContext Enforces Secure Access

To ensure that HiveContext enforces ACLs, enable the HDFS-Sentry plug-in as described in Synchronizing HDFS ACLs
and Sentry Permissions. Column-level access control for access from Spark SQL is not supported by the HDFS-Sentry
plug-in.

Interaction with Hive Views

When a Spark job accesses a Hive view, Spark must have privileges to read the data files in the underlying Hive tables.
Currently, Spark cannot use fine-grained privileges based on the columns or the WHERE clause in the view definition.
If Spark does not have the required privileges on the underlying data files, a SparkSQL query against the view returns
an empty result set, rather than an error.

Performance and Storage Considerations for Spark SQL DROP TABLE PURGE

The PURGE clause in the Hive DROP TABLE statement causes the underlying data files to be removed immediately,
without being transferred into a temporary holding area (the HDFS trashcan).

Although the PURGE clause is recognized by the Spark SQL DROP TABLE statement, this clause is currently not passed
along to the Hive statement that performs the “drop table” operation behind the scenes. Therefore, if you know the
PURGE behavior is important in your application for performance, storage, or security reasons, do the DROP TABLE
directly in Hive, for example through the beeline shell, rather than through Spark SQL.

The immediate deletion aspect of the PURGE clause could be significant in cases such as:

• If the cluster is running low on storage space and it is important to free space immediately, rather than waiting
for the HDFS trashcan to be periodically emptied.

• If the underlying data files reside on the Amazon S3 filesystem.Moving files to the HDFS trashcan from S3 involves
physically copying the files, meaning that the default DROP TABLE behavior on S3 involves significant performance
overhead.

• If the underlying data files contain sensitive information and it is important to remove them entirely, rather than
leaving them to be cleaned up by the periodic emptying of the trashcan.

Spark Guide | 19

Developing Spark Applications

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/sg_hdfs_sentry_sync.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/sg_hdfs_sentry_sync.html

• If restrictions on HDFS encryption zones prevent files from being moved to the HDFS trashcan. This restriction
primarily applies to CDH 5.7 and lower. With CDH 5.8 and higher, each HDFS encryption zone has its own HDFS
trashcan, so the normal DROP TABLE behavior works correctly without the PURGE clause.

Using Spark MLlib
CDH 5.5 supports MLlib, Spark's machine learning library. For information on MLlib, see the Machine Learning Library
(MLlib) Guide.

Running a Spark MLlib Example

To try Spark MLlib using one of the Spark example applications, do the following:

1. Download MovieLens sample data and copy it to HDFS:

$ wget --no-check-certificate \
https://raw.githubusercontent.com/apache/spark/branch-1.6/data/mllib/sample_movielens_data.txt
$ hdfs dfs -copyFromLocal sample_movielens_data.txt /user/hdfs

2. Run the SparkMLlibMovieLens example application, which calculates recommendations based onmovie reviews:

$ spark-submit --master local --class org.apache.spark.examples.mllib.MovieLensALS \
SPARK_HOME/lib/spark-examples.jar \
--rank 5 --numIterations 5 --lambda 1.0 --kryo sample_movielens_data.txt

Enabling Native Acceleration For MLlib

MLlib algorithms are compute intensive and benefit from hardware acceleration. To enable native acceleration for
MLlib, perform the following tasks.

Install Required Software

• Install the appropriate libgfortran 4.6+ package for your operating system. No compatible version is available
for RHEL 5 or 6.

Package VersionPackage NameOS

4.8.xlibgfortranRHEL 7.1

4.7.2libgfortran3SLES 11 SP3

4.6.3libgfortran3Ubuntu 12.04

4.8.4libgfortran3Ubuntu 14.04

4.7.2libgfortran3Debian 7.1

• Install the GPL Extras parcel or package.

Verify Native Acceleration

You can verify that native acceleration is working by examining logs after running an application. To verify native
acceleration with an MLlib example application:

1. Do the steps in Running a Spark MLlib Example on page 20.
2. Check the logs. If native libraries are not loaded successfully, you see the following four warnings before the final

line, where the RMSE is printed:

15/07/12 12:33:01 WARN BLAS: Failed to load implementation from:
com.github.fommil.netlib.NativeSystemBLAS

20 | Spark Guide

Developing Spark Applications

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/glossaries.html#glossary__glos_machine_learning
https://spark.apache.org/docs/1.6.0/mllib-guide.html
https://spark.apache.org/docs/1.6.0/mllib-guide.html
https://raw.githubusercontent.com/apache/spark/branch-1.5/examples/src/main/scala/org/apache/spark/examples/mllib/MovieLensALS.scala
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_gpl_extras.html

15/07/12 12:33:01 WARN BLAS: Failed to load implementation from:
com.github.fommil.netlib.NativeRefBLAS
15/07/12 12:33:01 WARN LAPACK: Failed to load implementation from:
com.github.fommil.netlib.NativeSystemLAPACK
15/07/12 12:33:01 WARN LAPACK: Failed to load implementation from:
com.github.fommil.netlib.NativeRefLAPACK
Test RMSE = 1.5378651281107205.

You see this on a system with no libgfortran. The same error occurs after installing libgfortran on RHEL 6
because it installs version 4.4, not 4.6+.

After installing libgfortran 4.8 on RHEL 7, you should see something like this:

15/07/12 13:32:20 WARN BLAS: Failed to load implementation from:
com.github.fommil.netlib.NativeSystemBLAS
15/07/12 13:32:20 WARN LAPACK: Failed to load implementation from:
com.github.fommil.netlib.NativeSystemLAPACK
Test RMSE = 1.5329939324808561.

Accessing External Storage from Spark
Spark can access all storage sources supported by Hadoop, including a local file system, HDFS, HBase, and Amazon S3.

Spark supports many file types, including text files, RCFile, SequenceFile, Hadoop InputFormat, Avro, Parquet,
and compression of all supported files.

For developer information about working with external storage, see External Storage in the Spark Programming Guide.

Accessing Compressed Files

You can read compressed files using one of the following methods:

• textFile(path)

• hadoopFile(path,outputFormatClass)

You can save compressed files using one of the following methods:

• saveAsTextFile(path, compressionCodecClass="codec_class")

• saveAsHadoopFile(path,outputFormatClass, compressionCodecClass="codec_class")

where codec_class is one of the classes in Compression Types.

For examples of accessing Avro and Parquet files, see Spark with Avro and Parquet.

Accessing Data Stored in Amazon S3 through Spark

To access data stored in Amazon S3 from Spark applications, you use Hadoop file APIs (SparkContext.hadoopFile,
JavaHadoopRDD.saveAsHadoopFile, SparkContext.newAPIHadoopRDD, and
JavaHadoopRDD.saveAsNewAPIHadoopFile) for reading and writing RDDs, providing URLs of the form
s3a://bucket_name/path/to/file. You can read and write Spark SQL DataFrames using the Data Source API.

You can access Amazon S3 by the following methods:

Without credentials:

Run EC2 instances with instance profiles associated with IAM roles that have the permissions you want. Requests
from a machine with such a profile authenticate without credentials.

With credentials:

• Specify the credentials in a configuration file, such as core-site.xml:

<property>
 <name>fs.s3a.access.key</name>

Spark Guide | 21

Developing Spark Applications

http://spark.apache.org/docs/1.6.0/programming-guide.html#external-datasets
https://github.com/sryza/simplesparkavroapp

 <value>...</value>
</property>
<property>
 <name>fs.s3a.secret.key</name>
 <value>...</value>
</property>

• Specify the credentials at run time. For example:

sc.hadoopConfiguration.set("fs.s3a.access.key", "...")
 sc.hadoopConfiguration.set("fs.s3a.secret.key", "...")

Reading and Writing Text Files From and To Amazon S3

After specifying credentials:

scala> sc.hadoopConfiguration.set("fs.s3a.access.key", "...")
scala> sc.hadoopConfiguration.set("fs.s3a.secret.key", "...")

you can perform the word count application:

scala> val sonnets = sc.textFile("s3a://s3-to-ec2/sonnets.txt")
scala> val counts = sonnets.flatMap(line => line.split(" ")).map(word => (word,
1)).reduceByKey(_ + _)
scala> counts.saveAsTextFile("s3a://s3-to-ec2/output")

on a sonnets.txt file stored in Amazon S3:

Yielding the output:

Reading and Writing Data Sources From and To Amazon S3

The following example illustrates how to read a text file from Amazon S3 into an RDD, convert the RDD to a DataFrame,
and then use the Data Source API to write the DataFrame into a Parquet file on Amazon S3:

22 | Spark Guide

Developing Spark Applications

1. Specify Amazon S3 credentials:

scala> sc.hadoopConfiguration.set("fs.s3a.access.key", "...")
scala> sc.hadoopConfiguration.set("fs.s3a.secret.key", "...")

2. Read a text file in Amazon S3:

scala> val sample_07 = sc.textFile("s3a://s3-to-ec2/sample_07.csv")

3. Map lines into columns:

scala> import org.apache.spark.sql.Row
scala> val rdd_07 = sample_07.map(_.split('\t')).map(e Row(e(0), e(1), e(2).trim.toInt,
 e(3).trim.toInt))

4. Create a schema and apply to the RDD to create a DataFrame:

scala> import org.apache.spark.sql.types.{StructType, StructField, StringType,
IntegerType};
scala> val schema = StructType(Array(
 StructField("code",StringType,false),
 StructField("description",StringType,false),
 StructField("total_emp",IntegerType,false),
 StructField("salary",IntegerType,false)))

scala> val df_07 = sqlContext.createDataFrame(rdd_07,schema)

5. Write DataFrame to a Parquet file:

scala> df_07.write.parquet("s3a://s3-to-ec2/sample_07.parquet")

The files are compressed with the default gzip compression.

Accessing Avro Data Files From Spark SQL Applications

Spark SQL supports loading and saving DataFrames from and to a variety of data sources.With the spark-avro library,
you can process data encoded in the Avro format using Spark.

The spark-avro library supports most conversions between Spark SQL and Avro records, making Avro a first-class
citizen in Spark. The library automatically performs the schema conversion. Spark SQL reads the data and converts it
to Spark's internal representation; the Avro conversion is performed only during reading and writing data.

By default, when pointed at a directory, read methods silently skip any files that do not have the .avro extension. To
include all files, set the avro.mapred.ignore.inputs.without.extension property to false. See Configuring
Spark Applications on page 30.

Spark Guide | 23

Developing Spark Applications

http://spark.apache.org/docs/1.6.0/sql-programming-guide.html#data-sources

Writing Compressed Data Files

To set the compression type used on write, configure the spark.sql.avro.compression.codec property:

sqlContext.setConf("spark.sql.avro.compression.codec","codec")

The supported codec values are uncompressed, snappy, and deflate. Specify the level to use with deflate
compression in spark.sql.avro.deflate.level. For an example, see Figure 6: Writing Deflate Compressed
Records on page 26.

Accessing Partitioned Data Files

The spark-avro library supports writing and reading partitioned data. You pass the partition columns to the writer.
For examples, see Figure 7: Writing Partitioned Data on page 26 and Figure 8: Reading Partitioned Data on page 26.

Specifying Record Name and Namespace

Specify the record name and namespace to use when writing to disk by passing recordName and recordNamespace
as optional parameters. For an example, see Figure 9: Specifying a Record Name on page 27.

Spark SQL

You canwrite SQL queries to query a set of Avro files. First, create a temporary table pointing to the directory containing
the Avro files. Then query the temporary table:

sqlContext.sql("CREATE TEMPORARY TABLE table_name
 USING com.databricks.spark.avro OPTIONS (path "input_dir"))
df = sqlContext.sql("SELECT * FROM table_name")

Avro to Spark SQL Conversion

The spark-avro library supports conversion for all Avro data types:

• boolean -> BooleanType
• int -> IntegerType
• long -> LongType
• float -> FloatType
• double -> DoubleType
• bytes -> BinaryType
• string -> StringType
• record -> StructType
• enum -> StringType
• array -> ArrayType
• map -> MapType
• fixed -> BinaryType

The spark-avro library supports the following union types:

• union(int, long) -> LongType
• union(float, double) -> DoubleType
• union(any, null) -> any

The library does not support complex union types.

All doc, aliases, and other fields are stripped when they are loaded into Spark.

Spark SQL to Avro Conversion

Every Spark SQL type is supported:

24 | Spark Guide

Developing Spark Applications

• BooleanType -> boolean
• IntegerType -> int
• LongType -> long
• FloatType -> float
• DoubleType -> double
• BinaryType -> bytes
• StringType -> string
• StructType -> record
• ArrayType -> array
• MapType -> map
• ByteType -> int
• ShortType -> int
• DecimalType -> string
• BinaryType -> bytes
• TimestampType -> long

Limitations

Because Spark is converting data types, keep the following in mind:

• Enumerated types are erased - Avro enumerated types become strings when they are read into Spark, because
Spark does not support enumerated types.

• Unions on output - Spark writes everything as unions of the given type along with a null option.
• Avro schema changes - Spark reads everything into an internal representation. Even if you just read and thenwrite

the data, the schema for the output is different.
• Spark schema reordering - Spark reorders the elements in its schema when writing them to disk so that the

elements being partitioned on are the last elements. For an example, see Figure 7: Writing Partitioned Data on
page 26.

API Examples

This section provides examples of using the spark-avro API in all supported languages.

Scala Examples

The easiest way to work with Avro data files in Spark applications is by using the DataFrame API. The spark-avro
library includes avromethods in SQLContext for reading and writing Avro files:

import com.databricks.spark.avro._

val sqlContext = new SQLContext(sc)

// The Avro records are converted to Spark types, filtered, and
// then written back out as Avro records
val df = sqlContext.read.avro("input_dir")
df.filter("age > 5").write.avro("output_dir")

Figure 4: Scala Example with Function

You can also specify "com.databricks.spark.avro" in the formatmethod:

import com.databricks.spark.avro._

val sqlContext = new SQLContext(sc)

val df = sqlContext.read.format("com.databricks.spark.avro").load("input_dir")

Spark Guide | 25

Developing Spark Applications

df.filter("age > 5").write.format("com.databricks.spark.avro").save("output_dir")

Figure 5: Scala Example with Format

import com.databricks.spark.avro._

val sqlContext = new SQLContext(sc)

// configuration to use deflate compression
sqlContext.setConf("spark.sql.avro.compression.codec", "deflate")
sqlContext.setConf("spark.sql.avro.deflate.level", "5")

val df = sqlContext.read.avro("input_dir")

// writes out compressed Avro records
df.write.avro("output_dir")

Figure 6: Writing Deflate Compressed Records

import com.databricks.spark.avro._

val sqlContext = new SQLContext(sc)

import sqlContext.implicits._

val df = Seq(
(2012, 8, "Batman", 9.8),
(2012, 8, "Hero", 8.7),
(2012, 7, "Robot", 5.5),
(2011, 7, "Git", 2.0)).toDF("year", "month", "title", "rating")

df.write.partitionBy("year", "month").avro("output_dir")

Figure 7: Writing Partitioned Data

This code outputs a directory structure like this:

-rw-r--r-- 3 hdfs supergroup 0 2015-11-03 14:58 /tmp/output/_SUCCESS
drwxr-xr-x - hdfs supergroup 0 2015-11-03 14:58 /tmp/output/year=2011
drwxr-xr-x - hdfs supergroup 0 2015-11-03 14:58 /tmp/output/year=2011/month=7
-rw-r--r-- 3 hdfs supergroup 229 2015-11-03 14:58
/tmp/output/year=2011/month=7/part-r-00001-9b89f1bd-7cf8-4ba8-910f-7587c0de5a90.avro
drwxr-xr-x - hdfs supergroup 0 2015-11-03 14:58 /tmp/output/year=2012
drwxr-xr-x - hdfs supergroup 0 2015-11-03 14:58 /tmp/output/year=2012/month=7
-rw-r--r-- 3 hdfs supergroup 231 2015-11-03 14:58
/tmp/output/year=2012/month=7/part-r-00001-9b89f1bd-7cf8-4ba8-910f-7587c0de5a90.avro
drwxr-xr-x - hdfs supergroup 0 2015-11-03 14:58 /tmp/output/year=2012/month=8
-rw-r--r-- 3 hdfs supergroup 246 2015-11-03 14:58
/tmp/output/year=2012/month=8/part-r-00000-9b89f1bd-7cf8-4ba8-910f-7587c0de5a90.avro

import com.databricks.spark.avro._

val sqlContext = new SQLContext(sc)
val df = sqlContext.read.avro("input_dir")

df.printSchema()
df.filter("year = 2011").collect().foreach(println)

Figure 8: Reading Partitioned Data

This code automatically detects the partitioned data and joins it all, so it is treated the same as unpartitioned data.
This also queries only the directory required, to decrease disk I/O.

root
|-- title: string (nullable = true)

26 | Spark Guide

Developing Spark Applications

|-- rating: double (nullable = true)
|-- year: integer (nullable = true)
|-- month: integer (nullable = true)

[Git,2.0,2011,7]

import com.databricks.spark.avro._

val sqlContext = new SQLContext(sc)
val df = sqlContext.read.avro("input_dir")

val name = "AvroTest"
val namespace = "com.cloudera.spark"
val parameters = Map("recordName" -> name, "recordNamespace" -> namespace)

df.write.options(parameters).avro("output_dir")

Figure 9: Specifying a Record Name

Java Example

Use the DataFrame API to query Avro files in Java. This example is almost identical to Figure 5: Scala Example with
Format on page 25:

import org.apache.spark.sql.*;

SQLContext sqlContext = new SQLContext(sc);

// Creates a DataFrame from a file
DataFrame df = sqlContext.read().format("com.databricks.spark.avro").load("input_dir");

// Saves the subset of the Avro records read in
df.filter("age > 5").write().format("com.databricks.spark.avro").save("output_dir");

Python Example

Use the DataFrame API to query Avro files in Python. This example is almost identical to Figure 5: Scala Example with
Format on page 25:

Creates a DataFrame from a directory
df = sqlContext.read.format("com.databricks.spark.avro").load("input_dir")

Saves the subset of the Avro records read in
df.where("age > 5").write.format("com.databricks.spark.avro").save("output_dir")

Accessing Parquet Files From Spark SQL Applications

Spark SQL supports loading and saving DataFrames from and to a variety of data sources and has native support for
Parquet. For information about Parquet, see Using Apache Parquet Data Files with CDH.

To read Parquet files in Spark SQL, use the SQLContext.read.parquet("path")method.

To write Parquet files in Spark SQL, use the DataFrame.write.parquet("path")method.

To set the compression type, configure the spark.sql.parquet.compression.codec property:

sqlContext.setConf("spark.sql.parquet.compression.codec","codec")

The supported codec values are: uncompressed, gzip, lzo, and snappy. The default is gzip.

Currently, Spark looks up columndata fromParquet files by using the names storedwithin the data files. This is different
than the default Parquet lookup behavior of Impala and Hive. If data files are produced with a different physical layout
due to added or reordered columns, Spark still decodes the column data correctly. If the logical layout of the table is
changed in themetastore database, for example through anALTER TABLE CHANGE statement that renames a column,

Spark Guide | 27

Developing Spark Applications

http://spark.apache.org/docs/1.6.0/sql-programming-guide.html#data-sources

Spark still looks for the data using the now-nonexistent column name and returns NULLs when it cannot locate the
column values. To avoid behavior differences between Spark and Impala or Hive whenmodifying Parquet tables, avoid
renaming columns, or use Impala, Hive, or a CREATE TABLE AS SELECT statement to produce a new table and new
set of Parquet files containing embedded column names that match the new layout.

For an example of writing Parquet files to Amazon S3, see Reading and Writing Data Sources From and To Amazon S3
on page 22.

Building Spark Applications
You can use Apache Maven to build Spark applications developed using Java and Scala.

For the Maven properties of CDH 5 components, see Using the CDH 5 Maven Repository. For the Maven properties of
Kafka, see Maven Artifacts for Kafka.

Building Applications

Follow these best practices when building Spark Scala and Java applications:

• Compile against the same version of Spark that you are running.
• Build a single assembly JAR ("Uber" JAR) that includes all dependencies. InMaven, add theMaven assembly plug-in

to build a JAR containing all dependencies:

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This plug-in manages the merge procedure for all available JAR files during the build. Exclude Spark, Hadoop, and
Kafka (CDH 5.5 and higher) classes from the assembly JAR, because they are already available on the cluster and
contained in the runtime classpath. InMaven, specify Spark, Hadoop, andKafka dependencieswith scopeprovided.
For example:

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.10</artifactId>
 <version>1.5.0-cdh5.5.0</version>
 <scope>provided</scope>
</dependency>

Building Reusable Modules

Using existing Scala and Java classes inside the Spark shell requires an effective deployment procedure and dependency
management. For simple and reliable reuse of Scala and Java classes and complete third-party libraries, you can use
amodule, which is a self-contained artifact created by Maven. This module can be shared by multiple users. This topic
shows how to use Maven to create a module containing all dependencies.

28 | Spark Guide

Developing Spark Applications

https://maven.apache.org/
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_vd_cdh5_maven_repo.html
http://www.cloudera.com/documentation/kafka/latest/topics/kafka_packaging.html#concept_kafka_maven_unique_1

Create a Maven Project

1. Use Maven to generate the project directory:

$ mvn archetype:generate -DgroupId=com.mycompany -DartifactId=mylibrary \
-DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

Download and Deploy Third-Party Libraries

1. Prepare a location for all third-party libraries that are not available through Maven Central but are required for
the project:

$ mkdir libs
$ cd libs

2. Download the required artifacts.
3. Use Maven to deploy the library JAR.
4. Add the library to the dependencies section of the POM file.
5. Repeat steps 2-4 for each library. For example, to add the JIDT library:

a. Download and decompress the zip file:

$ curl http://lizier.me/joseph/software/jidt/download.php?file=infodynamics-dist-1.3.zip
 > infodynamics-dist.1.3.zip
$ unzip infodynamics-dist-1.3.zip

b. Deploy the library JAR:

$ mvn deploy:deploy-file \
-Durl=file:///HOME/.m2/repository -Dfile=libs/infodynamics.jar \
-DgroupId=org.jlizier.infodynamics -DartifactId=infodynamics -Dpackaging=jar -Dversion=1.3

c. Add the library to the dependencies section of the POM file:

<dependency>
 <groupId>org.jlizier.infodynamics</groupId>
 <artifactId>infodynamics</artifactId>
 <version>1.3</version>
</dependency>

6. Add the Maven assembly plug-in to the plugins section in the pom.xml file.
7. Package the library JARs in a module:

$ mvn clean package

Run and Test the Spark Module

1. Run the Spark shell, providing the module JAR in the --jars option:

$ spark-shell --jars target/mylibrary-1.0-SNAPSHOT-jar-with-dependencies.jar

2. In the Environment tab of the Spark Web UI application (http://driver_host:4040/environment/), validate that
the spark.jars property contains the library. For example:

Spark Guide | 29

Developing Spark Applications

http://search.maven.org/
https://github.com/jlizier/jidt
http://www.cloudera.com/documentation/enterprise/latest/topics/operation_spark_applications.html

3. In the Spark shell, test that you can import some of the required Java classes from the third-party library. For
example, if you use the JIDT library, import MatrixUtils:

$ spark-shell
...
scala> import infodynamics.utils.MatrixUtils;

Packaging Different Versions of Libraries with an Application

To use a version of a library in your application that is different than the version of that library that is shipped with
Spark, use the Apache Maven Shade Plugin. This process is technically known as “relocation”, and often referred to as
“shading”.

See Relocating Classes for an example.

Configuring Spark Applications
You can specify Spark application configuration properties as follows:

• Pass properties using the --conf command-line switch; for example:

spark-submit \
--class com.cloudera.example.YarnExample \
--master yarn \
--deploy-mode cluster \
--conf "spark.eventLog.dir=hdfs:///user/spark/eventlog" \
lib/yarn-example.jar \
10

• Specify properties in spark-defaults.conf. See Configuring Spark Application Properties in spark-defaults.conf
on page 31.

• Pass properties directly to the SparkConf used to create the SparkContext in your Spark application; for
example:

– Scala:

val conf = new SparkConf().set("spark.dynamicAllocation.initialExecutors", "5")
val sc = new SparkContext(conf)

– Python:

from pyspark import SparkConf, SparkContext
from pyspark.sql import SQLContext
conf = (SparkConf().setAppName('Application name'))

30 | Spark Guide

Developing Spark Applications

https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/examples/class-relocation.html
https://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.SparkConf
https://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.SparkContext

conf.set('spark.hadoop.avro.mapred.ignore.inputs.without.extension', 'false')
sc = SparkContext(conf = conf)
sqlContext = SQLContext(sc)

The order of precedence in configuration properties is:

1. Properties passed to SparkConf.
2. Arguments passed to spark-submit, spark-shell, or pyspark.
3. Properties set in spark-defaults.conf.

For more information, see Spark Configuration.

Configuring Spark Application Properties in spark-defaults.conf

Specify properties in the spark-defaults.conf file in the form property value.

You create a comment by adding a hash mark (#) at the beginning of a line. You cannot add comments to the end or
middle of a line.

This example shows a spark-defaults.conf file:

spark.master spark://mysparkmaster.acme.com:7077
spark.eventLog.enabled true
spark.eventLog.dir hdfs:///user/spark/eventlog
Set spark executor memory
spark.executor.memory 2g
spark.logConf true

Cloudera recommends placing configuration properties that you want to use for every application in
spark-defaults.conf. See Application Properties for more information.

Configuring Properties in spark-defaults.conf Using Cloudera Manager

Configure properties for all Spark applications in spark-defaults.conf as follows:

1. Go to the Spark service.
2. Click the Configuration tab.
3. Select Scope > Gateway.
4. Select Category > Advanced.
5. Locate the Spark Client Advanced Configuration Snippet (Safety Valve) for spark-conf/spark-defaults.conf

property.
6. Specify properties described in Application Properties.

If more than one role group applies to this configuration, edit the value for the appropriate role group. See .

7. Click Save Changes to commit the changes.
8. Deploy the client configuration.

Configuring Properties in spark-defaults.conf Using the Command Line

Important:

• If you use Cloudera Manager, do not use these command-line instructions.
• This information applies specifically to CDH 5.7.x. If you use a lower version of CDH, see the

documentation for that version located at Cloudera Documentation.

To configure properties for all Spark applications using the command line, edit the file
SPARK_HOME/conf/spark-defaults.conf.

Spark Guide | 31

Developing Spark Applications

https://spark.apache.org/docs/1.6.0/configuration.html
https://spark.apache.org/docs/1.6.0/configuration.html#application-properties
https://spark.apache.org/docs/1.6.0/configuration.html#application-properties
http://www.cloudera.com/content/support/en/documentation.html

Configuring Spark Application Logging Properties

You configure Spark application logging properties in a log4j.properties file.

Configuring Logging Properties Using Cloudera Manager

To configure only the logging threshold level, follow the procedure in Configuring Logging Thresholds. To configure
any other logging property, do the following:

1. Go to the Spark service.
2. Click the Configuration tab.
3. Select Scope > Gateway.
4. Select Category > Advanced.
5. Locate the Spark Client Advanced Configuration Snippet (Safety Valve) for spark-conf/log4j.properties property.
6. Specify log4j properties.

If more than one role group applies to this configuration, edit the value for the appropriate role group. See
Modifying Configuration Properties.

7. Click Save Changes to commit the changes.
8. Deploy the client configuration.

Configuring Logging Properties Using the Command Line

Important:

• If you use Cloudera Manager, do not use these command-line instructions.
• This information applies specifically to CDH 5.7.x. If you use a lower version of CDH, see the

documentation for that version located at Cloudera Documentation.

To specify logging properties for all users on a machine by using the command line, edit the file
SPARK_HOME/conf/log4j.properties. To set it just for yourself or for a specific application, copy
SPARK_HOME/conf/log4j.properties.template to log4j.properties in your working directory or any
directory in your application's classpath.

32 | Spark Guide

Developing Spark Applications

https://logging.apache.org/log4j/1.2/manual.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_mod_configs.html
http://www.cloudera.com/content/support/en/documentation.html

Running Spark Applications

You can run Spark applications locally or distributed across a cluster, either by using an interactive shell or by submitting
an application. Running Spark applications interactively is commonly performed during the data-exploration phase
and for ad hoc analysis.

Because of a limitation in the way Scala compiles code, some applications with nested definitions running in an
interactive shell may encounter a Task not serializable exception. Cloudera recommends submitting these
applications.

To run applications distributed across a cluster, Spark requires a cluster manager. Cloudera supports two cluster
managers: YARN and Spark Standalone. When run on YARN, Spark application processes are managed by the YARN
ResourceManager and NodeManager roles. When run on Spark Standalone, Spark application processes are managed
by Spark Master and Worker roles.

In CDH 5, Cloudera recommends running Spark applications on a YARN clustermanager instead of on a Spark Standalone
cluster manager, for the following benefits:

• You can dynamically share and centrally configure the same pool of cluster resources among all frameworks that
run on YARN.

• You can use all the features of YARN schedulers for categorizing, isolating, and prioritizing workloads.
• You choose the number of executors to use; in contrast, Spark Standalone requires each application to run an

executor on every host in the cluster.
• Spark can run against Kerberos-enabled Hadoop clusters and use secure authentication between its processes.

For information on monitoring Spark applications, see Monitoring Spark Applications.

Submitting Spark Applications
To submit an application consisting of a Python file or a compiled and packaged Java or Spark JAR, use thespark-submit
script.

spark-submit Syntax

spark-submit --option value \
application jar | python file [application arguments]

Example: Running SparkPi on YARN on page 38 demonstrates how to run one of the sample applications, SparkPi,
packaged with Spark. It computes an approximation to the value of pi.

Table 1: spark-submit Arguments

DescriptionOption

Path to a JAR file containing a Spark application and all dependencies. For the
client deployment mode, the path must point to a local file. For the cluster

application jar

deployment mode, the path must be globally visible inside your cluster; see
Advanced Dependency Management.

Path to a Python file containing a Spark application. For the client deployment
mode, the path must point to a local file. For the cluster deployment mode,

python file

the pathmust be globally visible inside your cluster; see AdvancedDependency
Management.

Arguments to pass to the main method of your main class.application arguments

Spark Guide | 33

Running Spark Applications

http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_spark_auth.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/operation_spark_applications.html
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management

spark-submit Options
You specifyspark-submit options using the form--optionvalue instead of--option=value. (Use a space instead
of an equals sign.)

DescriptionOption

For Java and Scala applications, the fully qualified classname of the class
containing the main method of the application. For example,
org.apache.spark.examples.SparkPi.

class

Spark configuration property in key=value format. For values that contain
spaces, surround "key=value" with quotes (as shown).

conf

Deployment mode: cluster and client. In cluster mode, the driver runs on
worker hosts. In client mode, the driver runs locally as an external client. Use

deploy-mode

cluster mode with production jobs; client mode is more appropriate for
interactive and debugging uses, where youwant to see your application output
immediately. To see the effect of the deployment mode when running on
YARN, see Deployment Modes on page 35.

Default: client.

Configuration and classpath entries to pass to the driver. JARs added with
--jars are automatically included in the classpath.

driver-class-path

Number of cores used by the driver in cluster mode.

Default: 1.

driver-cores

Maximum heap size (represented as a JVM string; for example 1024m, 2g,
and so on) to allocate to the driver. Alternatively, you can use the
spark.driver.memory property.

driver-memory

Comma-separated list of files to be placed in the working directory of each
executor. For the client deployment mode, the path must point to a local file.

files

For the cluster deployment mode, the path must be globally visible inside
your cluster; see Advanced Dependency Management.

Additional JARs to be loaded in the classpath of drivers and executors in cluster
mode or in the executor classpath in client mode. For the client deployment

jars

mode, the path must point to a local file. For the cluster deployment mode,
the pathmust be globally visible inside your cluster; see AdvancedDependency
Management.

The location to run the application.master

Comma-separated list of Maven coordinates of JARs to include on the driver
and executor classpaths. The local Maven, Maven central, and remote

packages

repositories specified inrepositories are searched in that order. The format
for the coordinates is groupId:artifactId:version.

Comma-separated list of .zip, .egg, or .py files to place on PYTHONPATH. For
the client deploymentmode, the pathmust point to a local file. For the cluster

py-files

deployment mode, the path must be globally visible inside your cluster; see
Advanced Dependency Management.

Comma-separated list of remote repositories to search for the Maven
coordinates specified in packages.

repositories

34 | Spark Guide

Running Spark Applications

https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management

Table 2: Master Values

DescriptionMaster

Run Spark locally with one worker thread (that is, no parallelism).local

Run Spark locally with K worker threads. (Ideally, set this to the number of
cores on your host.)

local[K]

Run Spark locally with as many worker threads as logical cores on your host.local[*]

Run using the Spark Standalone cluster manager with the Spark Master on
the specified host and port (7077 by default).

spark://host:port

Run using a YARN cluster manager. The cluster location is determined by
HADOOP_CONF_DIR or YARN_CONF_DIR. See Configuring the Environment
on page 37.

yarn

Cluster Execution Overview
Spark orchestrates its operations through the driver program. When the driver program is run, the Spark framework
initializes executor processes on the cluster hosts that process your data. The following occurs when you submit a
Spark application to a cluster:

1. The driver is launched and invokes the mainmethod in the Spark application.
2. The driver requests resources from the cluster manager to launch executors.
3. The cluster manager launches executors on behalf of the driver program.
4. The driver runs the application. Based on the transformations and actions in the application, the driver sends tasks

to executors.
5. Tasks are run on executors to compute and save results.
6. If dynamic allocation is enabled, after executors are idle for a specified period, they are released.
7. When driver's mainmethod exits or calls SparkContext.stop, it terminates any outstanding executors and

releases resources from the cluster manager.

Running Spark Applications on YARN
When Spark applications run on a YARN clustermanager, resourcemanagement, scheduling, and security are controlled
by YARN.

Deployment Modes

In YARN, each application instance has an ApplicationMaster process, which is the first container started for that
application. The application is responsible for requesting resources from the ResourceManager. Once the resources
are allocated, the application instructs NodeManagers to start containers on its behalf. ApplicationMasters eliminate
the need for an active client: the process starting the application can terminate, and coordination continues from a
process managed by YARN running on the cluster.

For the option to specify the deployment mode, see spark-submit Options on page 34.

Cluster Deployment Mode

In cluster mode, the Spark driver runs in the ApplicationMaster on a cluster host. A single process in a YARN container
is responsible for both driving the application and requesting resources from YARN. The client that launches the
application does not need to run for the lifetime of the application.

Spark Guide | 35

Running Spark Applications

http://www.cloudera.com/documentation/enterprise/latest/topics/sg_spark_auth.html

Cluster mode is not well suited to using Spark interactively. Spark applications that require user input, such as
spark-shell and pyspark, require the Spark driver to run inside the client process that initiates the Spark application.

Client Deployment Mode

In client mode, the Spark driver runs on the host where the job is submitted. The ApplicationMaster is responsible only
for requesting executor containers from YARN. After the containers start, the client communicates with the containers
to schedule work.

36 | Spark Guide

Running Spark Applications

Table 3: Deployment Mode Summary

YARN Cluster ModeYARN Client ModeMode

ApplicationMasterClientDriver runs in

ApplicationMasterApplicationMasterRequests resources

YARN NodeManagerYARN NodeManagerStarts executor processes

YARN ResourceManager and
NodeManagers

YARN ResourceManager and
NodeManagers

Persistent services

NoYesSupports Spark Shell

Configuring the Environment

Spark requires that theHADOOP_CONF_DIR orYARN_CONF_DIR environment variable point to the directory containing
the client-side configuration files for the cluster. These configurations are used to write to HDFS and connect to the
YARNResourceManager. If you are using a ClouderaManager deployment, these variables are configured automatically.
If you are using an unmanaged deployment, ensure that you set the variables as described in Running Spark on YARN.

Running a Spark Shell Application on YARN

To run the spark-shell or pyspark client on YARN, use the --master yarn --deploy-mode client flags when
you start the application.

Spark Guide | 37

Running Spark Applications

http://spark.apache.org/docs/1.6.0/running-on-yarn.html

If you are using a Cloudera Manager deployment, these properties are configured automatically.

Submitting Spark Applications to YARN

To submit an application to YARN, use the spark-submit script and specify the --master yarn flag. For other
spark-submit options, see Table 1: spark-submit Arguments on page 33.

Monitoring and Debugging Spark Applications

To obtain information about Spark application behavior you can consult YARN logs and the Spark web application UI.
These twomethods provide complementary information. For information how to view logs created by Spark applications
and the Spark web application UI, see Monitoring Spark Applications.

Example: Running SparkPi on YARN

These examples demonstrate how to use spark-submit to submit the SparkPi Spark example applicationwith various
options. In the examples, the argument passed after the JAR controls how close to pi the approximation should be.

In a CDH deployment, SPARK_HOME defaults to /usr/lib/spark in package installations and
/opt/cloudera/parcels/CDH/lib/spark in parcel installations. In a Cloudera Manager deployment, the shells
are also available from /usr/bin.

Running SparkPi in YARN Cluster Mode

To run SparkPi in cluster mode:

• CDH 5.2 and lower

spark-submit --class org.apache.spark.examples.SparkPi --master yarn \
--deploy-mode cluster SPARK_HOME/examples/lib/spark-examples.jar 10

• CDH 5.3 and higher

spark-submit --class org.apache.spark.examples.SparkPi --master yarn \
--deploy-mode cluster SPARK_HOME/lib/spark-examples.jar 10

The command prints status until the job finishes or you press control-C. Terminating the spark-submit process
in cluster mode does not terminate the Spark application as it does in client mode. Tomonitor the status of the running
application, run yarn application -list.

Running SparkPi in YARN Client Mode

To run SparkPi in client mode:

• CDH 5.2 and lower

spark-submit --class org.apache.spark.examples.SparkPi --master yarn \
--deploy-mode client SPARK_HOME/examples/lib/spark-examples.jar 10

• CDH 5.3 and higher

spark-submit --class org.apache.spark.examples.SparkPi --master yarn \
--deploy-mode client SPARK_HOME/lib/spark-examples.jar 10

Running Python SparkPi in YARN Cluster Mode

1. Unpack the Python examples archive:

sudo su gunzip SPARK_HOME/lib/python.tar.gz
sudo su tar xvf SPARK_HOME/lib/python.tar

38 | Spark Guide

Running Spark Applications

https://github.com/apache/spark/tree/branch-1.5/examples/src/main

2. Run the pi.py file:

spark-submit --master yarn --deploy-mode cluster SPARK_HOME/lib/pi.py 10

Configuring Spark on YARN Applications

In addition to spark-submit Options on page 34, options for running Spark applications on YARN are listed in Table 4:
spark-submit on YARN Options on page 39.

Table 4: spark-submit on YARN Options

DescriptionOption

Comma-separated list of archives to be extracted into the working directory
of each executor. For the client deployment mode, the path must point to a

archives

local file. For the cluster deployment mode, the path must be globally visible
inside your cluster; see Advanced Dependency Management.

Number of processor cores to allocate on each executor. Alternatively, you
can use the spark.executor.cores property.

executor-cores

Maximum heap size to allocate to each executor. Alternatively, you can use
the spark.executor.memory property.

executor-memory

Total number of YARN containers to allocate for this application. Alternatively,
you can use the spark.executor.instances property.

num-executors

YARN queue to submit to. For more information, see Assigning Applications
and Queries to Resource Pools.

Default: default.

queue

During initial installation, Cloudera Manager tunes properties according to your cluster environment.

In addition to the command-line options, the following properties are available:

DescriptionProperty

Amount of extra off-heap memory that can be requested from YARN per
driver. Combinedwith spark.driver.memory, this is the totalmemory that
YARN can use to create a JVM for a driver process.

spark.yarn.driver.memoryOverhead

Amount of extra off-heap memory that can be requested from YARN, per
executor process. Combinedwith spark.executor.memory, this is the total
memory YARN can use to create a JVM for an executor process.

spark.yarn.executor.memoryOverhead

Dynamic Allocation

Dynamic allocation allows Spark to dynamically scale the cluster resources allocated to your application based on the
workload. When dynamic allocation is enabled and a Spark application has a backlog of pending tasks, it can request
executors. When the application becomes idle, its executors are released and can be acquired by other applications.

Starting with CDH 5.5, dynamic allocation is enabled by default. Table 5: Dynamic Allocation Properties on page 40
describes properties to control dynamic allocation.

If you set spark.dynamicAllocation.enabled to false or use the --num-executors command-line argument
or set the spark.executor.instances property when running a Spark application, dynamic allocation is disabled.
For more information on how dynamic allocation works, see resource allocation policy.

When Spark dynamic resource allocation is enabled, all resources are allocated to the first submitted job available
causing subsequent applications to be queued up. To allow applications to acquire resources in parallel, allocate

Spark Guide | 39

Running Spark Applications

https://spark.apache.org/docs/1.6.0/submitting-applications.html#advanced-dependency-management
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_mc_resource_pools.html#concept_rmc_2pf_jn_unique_1
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_mc_resource_pools.html#concept_rmc_2pf_jn_unique_1
https://spark.apache.org/docs/1.6.0/job-scheduling.html#resource-allocation-policy

resources to pools and run the applications in those pools and enable applications running in pools to be preempted.
See Dynamic Resource Pools.

If you are using Spark Streaming, see the recommendation in Spark Streaming and Dynamic Allocation on page 13.

Table 5: Dynamic Allocation Properties

DescriptionProperty

The length of time executor must be idle before it is removed.

Default: 60 s.

spark.dynamicAllocation.executorIdleTimeout

Whether dynamic allocation is enabled.

Default: true.

spark.dynamicAllocation.enabled

The initial number of executors for a Spark applicationwhendynamic allocation
is enabled.

Default: 1.

spark.dynamicAllocation.initialExecutors

The lower bound for the number of executors.

Default: 0.

spark.dynamicAllocation.minExecutors

The upper bound for the number of executors.

Default: Integer.MAX_VALUE.

spark.dynamicAllocation.maxExecutors

The length of time pending tasks must be backlogged before new executors
are requested.

Default: 1 s.

spark.dynamicAllocation.schedulerBacklogTimeout

Optimizing YARN Mode in Unmanaged CDH Deployments

In CDH deployments not managed by Cloudera Manager, Spark copies the Spark assembly JAR file to HDFS each time
you run spark-submit. You can avoid this copying by doing one of the following:

• Set spark.yarn.jar to the local path to the assembly JAR:
local:/usr/lib/spark/lib/spark-assembly.jar.

• Upload the JAR and configure the JAR location:

1. Manually upload the Spark assembly JAR file to HDFS:

$ hdfs dfs -mkdir -p /user/spark/share/lib
$ hdfs dfs -put SPARK_HOME/assembly/lib/spark-assembly_*.jar
/user/spark/share/lib/spark-assembly.jar

You must manually upload the JAR each time you upgrade Spark to a new minor CDH release.
2. Set spark.yarn.jar to the HDFS path:

spark.yarn.jar=hdfs://namenode:8020/user/spark/share/lib/spark-assembly.jar

Using PySpark
Apache Spark provides APIs in non-JVM languages such as Python. Many data scientists use Python because it has a
rich variety of numerical libraries with a statistical, machine-learning, or optimization focus.

40 | Spark Guide

Running Spark Applications

Running Spark Python Applications

Accessing Spark with Java and Scala offers many advantages: platform independence by running inside the JVM,
self-contained packaging of code and its dependencies into JAR files, and higher performance because Spark itself runs
in the JVM. You lose these advantages when using the Spark Python API.

Managing dependencies and making them available for Python jobs on a cluster can be difficult. To determine which
dependencies are required on the cluster, you must understand that Spark code applications run in Spark executor
processes distributed throughout the cluster. If the Python transformations you define use any third-party libraries,
such as NumPy or nltk, Spark executors require access to those libraries when they run on remote executors.

Setting the Python Path

After the Python packages youwant to use are in a consistent location on your cluster, set the appropriate environment
variables to the path to your Python executables as follows:

• Specify the Python binary to be used by the Spark driver and executors by setting the PYSPARK_PYTHON
environment variable in spark-env.sh. You can also override the driver Python binary path individually using
the PYSPARK_DRIVER_PYTHON environment variable. These settings apply regardless of whether you are using
yarn-client or yarn-cluster mode.

Make sure to set the variables using a conditional export statement. For example:

if ["${PYSPARK_PYTHON}" = "python"]; then
 export PYSPARK_PYTHON=<path_to_python_executable>
fi

This statement sets the PYSPARK_PYTHON environment variable to <path_to_python_executable> if it is set to
python. This is necessary because the pyspark script sets PYSPARK_PYTHON to python if it is not already set
to something else. If the user has set PYSPARK_PYTHON to something else, both pyspark and this example
preserve their setting.

Here are some example Python binary paths:

– Anaconda parcel: /opt/cloudera/parcels/Anaconda/bin/python
– Virtual environment: /path/to/virtualenv/bin/python

• If you are using yarn-cluster mode, in addition to the above, also set
spark.yarn.appMasterEnv.PYSPARK_PYTHONandspark.yarn.appMasterEnv.PYSPARK_DRIVER_PYTHON
in spark-defaults.conf (using the safety valve) to the same paths.

In Cloudera Manager, set environment variables in spark-env.sh and spark-defaults.conf as follows:

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the Spark service.
2. Click the Configuration tab.
3. Search for Spark Service Advanced Configuration Snippet (Safety Valve) for spark-conf/spark-env.sh.
4. Add the spark-env.sh variables to the property.
5. Search for Spark Client Advanced Configuration Snippet (Safety Valve) for spark-conf/spark-defaults.conf.
6. Add the spark-defaults.conf variables to the property.
7. Click Save Changes to commit the changes.
8. Restart the service.
9. Deploy the client configuration.

On the command-line, set environment variables in /etc/spark/conf/spark-env.sh.

Spark Guide | 41

Running Spark Applications

http://www.numpy.org/
http://www.nltk.org/

Self-Contained Dependencies

In a common situation, a custom Python package contains functionality you want to apply to each element of an RDD.
You can use a map() function call to make sure that each Spark executor imports the required package, before calling
any of the functions inside that package. The following shows a simple example:

def import_my_special_package(x):
 import my.special.package
 return x

int_rdd = sc.parallelize([1, 2, 3, 4])
int_rdd.map(lambda x: import_my_special_package(x))
int_rdd.collect()

You create a simple RDD of four elements and call it int_rdd. Then you apply the function
import_my_special_package to every element of theint_rdd. This function importsmy.special.package and
then returns the original argument passed to it. Calling this function as part of a map() operation ensures that each
Spark executor imports my.special.package when needed.

If you only need a single file inside my.special.package, you can direct Spark to make this available to all executors
by using the --py-files option in your spark-submit command and specifying the local path to the file. You can
also specify this programmatically by using the sc.addPyFiles() function. If you use functionality from a package
that spans multiple files, you can make an egg for the package, because the --py-files flag also accepts a path to
an egg file.

If you have a self-contained dependency, you can make the required Python dependency available to your executors
in two ways:

• If you depend on only a single file, you can use the --py-files command-line option, or programmatically add
the file to the SparkContext with sc.addPyFiles(path) and specify the local path to that Python file.

• If you have a dependency on a self-contained module (a module with no other dependencies), you can create an
egg or zip file of that module and use either the --py-files command-line option or programmatically add the
module to theSparkContext with sc.addPyFiles(path) and specify the local path to that egg or zip file.

Complex Dependencies

Someoperations rely on complex packages that also havemany dependencies. For example, the following code snippet
imports the Python pandas data analysis library:

def import_pandas(x):
 import pandas
 return x

int_rdd = sc.parallelize([1, 2, 3, 4])
int_rdd.map(lambda x: import_pandas(x))
int_rdd.collect()

pandas depends on NumPy, SciPy, and many other packages. Although pandas is too complex to distribute as a *.py
file, you can create an egg for it and its dependencies and send that to executors.

Limitations of Distributing Egg Files

In both self-contained and complex dependency scenarios, sending egg files is problematic because packages that
contain native code must be compiled for the specific host on which it will run. When doing distributed computing
with industry-standard hardware, you must assume is that the hardware is heterogeneous. However, because of the
required C compilation, a Python egg built on a client host is specific to the client CPU architecture. Therefore, distributing
an egg for complex, compiled packages like NumPy, SciPy, and pandas often fails. Instead of distributing egg files you
should install the required Python packages on each host of the cluster and specify the path to the Python binaries for
the worker hosts to use.

42 | Spark Guide

Running Spark Applications

https://pypi.python.org/pypi/setuptools
http://pandas.pydata.org/

Installing and Maintaining Python Environments

Installing andmaintaining Python environments can be complex but allows you to use the full Python package ecosystem.
Ideally, a sysadmin installs the Anaconda distribution or sets up a virtual environment on every host of your cluster
with your required dependencies.

If you are using Cloudera Manager, you can deploy the Anaconda distribution as a parcel as follows:

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. Add the following URL https://repo.anaconda.com/pkgs/misc/parcels/ to the Remote Parcel Repository URLs as
described in Parcel Configuration Settings.

Important: Spark 1.6, which is includedwith CDH, does not support Python version 3.6. To ensure
compatibility with Spark 1.6, use Anaconda 5.0.1 or earlier, which is available from the Anaconda
parcel archives page.

2. Download, distribute, and activate the parcel as described in Managing Parcels.

Anaconda is installed in parcel directory/Anaconda, where parcel directory is /opt/cloudera/parcels by
default, but can be changed in parcel configuration settings. The Anaconda parcel is supported by ContinuumAnalytics.

If you are not using Cloudera Manager, you can set up a virtual environment on your cluster by running commands on
each host using Cluster SSH, Parallel SSH, or Fabric. Assuming each host has Python and pip installed, use the following
commands to set up the standard data stack (NumPy, SciPy, scikit-learn, and pandas) in a virtual environment on a
RHEL 6-compatible system:

Install python-devel:
yum install python-devel

Install non-Python dependencies required by SciPy that are not installed by default:
yum install atlas atlas-devel lapack-devel blas-devel

install virtualenv:
pip install virtualenv

create a new virtualenv:
virtualenv mynewenv

activate the virtualenv:
source mynewenv/bin/activate

install packages in mynewenv:
pip install numpy
pip install scipy
pip install scikit-learn
pip install pandas

Spark and IPython and Jupyter Notebooks

IPython Notebook is a system similar to Mathematica that allows you to create “executable documents”. IPython
Notebooks integrate formatted text (Markdown), executable code (Python), mathematical formulas (LaTeX), and
graphics and visualizations (matplotlib) into a single document that captures the flow of an exploration and can be
exported as a formatted report or an executable script.

Important:

Cloudera does not support IPython or Jupyter notebooks on CDH. The instructions that were formerly
here have been removed to avoid confusion about the support status of these components.

Spark Guide | 43

Running Spark Applications

https://www.anaconda.com/download
https://virtualenv.pypa.io/en/latest/
http://docs.anaconda.com/anaconda/user-guide/tasks/cloudera/
https://repo.anaconda.com/pkgs/misc/parcels/
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_parcels.html#cmug_topic_7_11_5_unique_1
https://repo.anaconda.com/pkgs/misc/parcels/archive/
https://repo.anaconda.com/pkgs/misc/parcels/archive/
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_parcels.html
https://www.continuum.io/
http://sourceforge.net/projects/clusterssh/
http://code.google.com/p/parallel-ssh/
http://docs.fabfile.org/en/1.10/
http://ipython.org/notebook.html
http://matplotlib.org/

Tuning Spark Applications
This topic describes various aspects in tuning Spark applications. During tuning you shouldmonitor application behavior
to determine the effect of tuning actions.

For information on monitoring Spark applications, see Monitoring Spark Applications.

Shuffle Overview

A Spark dataset comprises a fixed number of partitions, each of which comprises a number of records. For the datasets
returned by narrow transformations, such as map and filter, the records required to compute the records in a single
partition reside in a single partition in the parent dataset. Each object is only dependent on a single object in the parent.
Operations such as coalesce can result in a task processing multiple input partitions, but the transformation is still
considered narrow because the input records used to compute any single output record can still only reside in a limited
subset of the partitions.

Spark also supports transformations withwide dependencies, such as groupByKey and reduceByKey. In these
dependencies, the data required to compute the records in a single partition can reside inmany partitions of the parent
dataset. To perform these transformations, all of the tuples with the same key must end up in the same partition,
processed by the same task. To satisfy this requirement, Spark performs a shuffle, which transfers data around the
cluster and results in a new stage with a new set of partitions.

For example, consider the following code:

sc.textFile("someFile.txt").map(mapFunc).flatMap(flatMapFunc).filter(filterFunc).count()

It runs a single action, count, which depends on a sequence of three transformations on a dataset derived from a text
file. This code runs in a single stage, because none of the outputs of these three transformations depend on data that
comes from different partitions than their inputs.

In contrast, this Scala code finds howmany times each character appears in all the words that appear more than 1,000
times in a text file:

val tokenized = sc.textFile(args(0)).flatMap(_.split(' '))
val wordCounts = tokenized.map((_, 1)).reduceByKey(_ + _)
val filtered = wordCounts.filter(_._2 >= 1000)
val charCounts = filtered.flatMap(_._1.toCharArray).map((_, 1)).reduceByKey(_ + _)
charCounts.collect()

This example has three stages. The tworeduceByKey transformations each trigger stage boundaries, because computing
their outputs requires repartitioning the data by keys.

A final example is this more complicated transformation graph, which includes a join transformation with multiple
dependencies:

The pink boxes show the resulting stage graph used to run it:

44 | Spark Guide

Running Spark Applications

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/operation_spark_applications.html

At each stage boundary, data is written to disk by tasks in the parent stages and then fetched over the network by
tasks in the child stage. Because they incur high disk and network I/O, stage boundaries can be expensive and should
be avoided when possible. The number of data partitions in a parent stage may be different than the number of
partitions in a child stage. Transformations that can trigger a stage boundary typically accept a numPartitions
argument, which specifies into howmany partitions to split the data in the child stage. Just as the number of reducers
is an important parameter in MapReduce jobs, the number of partitions at stage boundaries can determine an
application's performance. Tuning the Number of Partitions on page 49 describes how to tune this number.

Choosing Transformations to Minimize Shuffles

You can usually choose from many arrangements of actions and transformations that produce the same results.
However, not all these arrangements result in the same performance. Avoiding common pitfalls and picking the right
arrangement can significantly improve an application's performance.

When choosing an arrangement of transformations, minimize the number of shuffles and the amount of data shuffled.
Shuffles are expensive operations; all shuffle data must be written to disk and then transferred over the network.
repartition , join, cogroup, and any of the *By or *ByKey transformations can result in shuffles. Not all these
transformations are equal, however, and you should avoid the following patterns:

• groupByKey when performing an associative reductive operation. For example,
rdd.groupByKey().mapValues(_.sum) produces the same result as rdd.reduceByKey(_ + _). However,
the former transfers the entire dataset across the network, while the latter computes local sums for each key in
each partition and combines those local sums into larger sums after shuffling.

• reduceByKeywhen the input and output value types are different. For example, considerwriting a transformation
that finds all the unique strings corresponding to each key. You could use map to transform each element into a
Set and then combine the Sets with reduceByKey:

rdd.map(kv => (kv._1, new Set[String]() + kv._2)).reduceByKey(_ ++ _)

This results in unnecessary object creation because a new set must be allocated for each record.

Instead, use aggregateByKey, which performs the map-side aggregation more efficiently:

val zero = new collection.mutable.Set[String]()
rdd.aggregateByKey(zero)((set, v) => set += v,(set1, set2) => set1 ++= set2)

• flatMap-join-groupBy. When two datasets are already grouped by key and you want to join them and keep
them grouped, use cogroup. This avoids the overhead associated with unpacking and repacking the groups.

Spark Guide | 45

Running Spark Applications

When Shuffles Do Not Occur

In some circumstances, the transformations described previously do not result in shuffles. Spark does not shuffle when
a previous transformation has already partitioned the data according to the same partitioner. Consider the following
flow:

rdd1 = someRdd.reduceByKey(...)
rdd2 = someOtherRdd.reduceByKey(...)
rdd3 = rdd1.join(rdd2)

Because no partitioner is passed to reduceByKey, the default partitioner is used, resulting in rdd1 and rdd2 both
being hash-partitioned. These two reduceByKey transformations result in two shuffles. If the datasets have the same
number of partitions, a join requires no additional shuffling. Because the datasets are partitioned identically, the set
of keys in any single partition of rdd1 can only occur in a single partition of rdd2. Therefore, the contents of any single
output partition of rdd3 depends only on the contents of a single partition in rdd1 and single partition in rdd2, and
a third shuffle is not required.

For example, if someRdd has four partitions, someOtherRdd has two partitions, and both the reduceByKeys use
three partitions, the set of tasks that run would look like this:

If rdd1 and rdd2 use different partitioners or use the default (hash) partitioner with different numbers of partitions,
only one of the datasets (the one with the fewer number of partitions) needs to be reshuffled for the join:

46 | Spark Guide

Running Spark Applications

To avoid shuffles when joining two datasets, you can use broadcast variables.When one of the datasets is small enough
to fit in memory in a single executor, it can be loaded into a hash table on the driver and then broadcast to every
executor. A map transformation can then reference the hash table to do lookups.

When to Add a Shuffle Transformation

The rule of minimizing the number of shuffles has some exceptions.

An extra shuffle can be advantageous when it increases parallelism. For example, if your data arrives in a few large
unsplittable files, the partitioning dictated by theInputFormatmight place large numbers of records in each partition,
while not generating enough partitions to use all available cores. In this case, invoking repartition with a high number
of partitions (which triggers a shuffle) after loading the data allows the transformations that follow to use more of the
cluster's CPU.

Another example arises when using the reduce or aggregate action to aggregate data into the driver. When
aggregating over a high number of partitions, the computation can quickly become bottlenecked on a single thread in
the drivermerging all the results together. To lighten the load on the driver, first use reduceByKey or aggregateByKey
to perform a round of distributed aggregation that divides the dataset into a smaller number of partitions. The values
in each partition aremergedwith each other in parallel, before being sent to the driver for a final round of aggregation.
See treeReduce and treeAggregate for examples of how to do that.

Thismethod is especially useful when the aggregation is already grouped by a key. For example, consider an application
that counts the occurrences of each word in a corpus and pulls the results into the driver as a map. One approach,
which can be accomplished with the aggregate action, is to compute a local map at each partition and then merge
the maps at the driver. The alternative approach, which can be accomplished with aggregateByKey, is to perform
the count in a fully distributed way, and then simply collectAsMap the results to the driver.

Secondary Sort

The repartitionAndSortWithinPartitions transformation repartitions the dataset according to a partitioner
and, within each resulting partition, sorts records by their keys. This transformation pushes sorting down into the
shuffle machinery, where large amounts of data can be spilled efficiently and sorting can be combined with other
operations.

For example, Apache Hive on Spark uses this transformation inside its join implementation. It also acts as a vital
building block in the secondary sort pattern, in which you group records by key and then, when iterating over the
values that correspond to a key, have them appear in a particular order. This scenario occurs in algorithms that need
to group events by user and then analyze the events for each user, based on the time they occurred.

Spark Guide | 47

Running Spark Applications

https://spark.apache.org/docs/1.6.0/programming-guide.html#broadcast-variables
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L1030
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L1104
https://spark.apache.org/docs/1.6.0/api/scala/#org.apache.spark.rdd.OrderedRDDFunctions
http://www.quora.com/What-is-secondary-sort-in-Hadoop-and-how-does-it-work

Tuning Resource Allocation

For background information on how Spark applications use the YARN cluster manager, see Running Spark Applications
on YARN on page 35.

The two main resources that Spark and YARN manage are CPU and memory. Disk and network I/O affect Spark
performance as well, but neither Spark nor YARN actively manage them.

Every Spark executor in an application has the same fixed number of cores and same fixed heap size. Specify the number
of cores with the --executor-cores command-line flag, or by setting the spark.executor.cores property.
Similarly, control the heap size with the --executor-memory flag or the spark.executor.memory property. The
cores property controls the number of concurrent tasks an executor can run. For example, set --executor-cores
5 for each executor to run a maximum of five tasks at the same time. The memory property controls the amount of
data Spark can cache, as well as the maximum sizes of the shuffle data structures used for grouping, aggregations, and
joins.

Starting with CDH 5.5 dynamic allocation, which adds and removes executors dynamically, is enabled. To explicitly
control the number of executors, you can override dynamic allocation by setting the--num-executors command-line
flag or spark.executor.instances configuration property.

Consider also how the resources requested by Spark fit into resources YARNhas available. The relevant YARNproperties
are:

• yarn.nodemanager.resource.memory-mb controls the maximum sum of memory used by the containers on
each host.

• yarn.nodemanager.resource.cpu-vcores controls the maximum sum of cores used by the containers on
each host.

Requesting five executor cores results in a request to YARN for five cores. The memory requested from YARN is more
complex for two reasons:

• The --executor-memory/spark.executor.memory property controls the executor heap size, but executors
can also use some memory off heap, for example, Java NIO direct buffers. The value of the
spark.yarn.executor.memoryOverhead property is added to the executor memory to determine the full
memory request to YARN for each executor. It defaults to max(384, .1 * spark.executor.memory).

• YARN may round the requested memory up slightly. The yarn.scheduler.minimum-allocation-mb and
yarn.scheduler.increment-allocation-mb properties control theminimumand increment request values,
respectively.

The following diagram (not to scale with defaults) shows the hierarchy of memory properties in Spark and YARN:

Keep the following in mind when sizing Spark executors:

• The ApplicationMaster, which is a non-executor container that can request containers fromYARN, requiresmemory
and CPU that must be accounted for. In client deployment mode, they default to 1024MB and one core. In cluster
deployment mode, the ApplicationMaster runs the driver, so consider bolstering its resources with the
--driver-memory and --driver-cores flags.

• Running executors with too much memory often results in excessive garbage-collection delays. For a single
executor, use 64 GB as an upper limit.

• The HDFS client has difficulty processing many concurrent threads. At most, five tasks per executor can achieve
full write throughput, so keep the number of cores per executor below that number.

48 | Spark Guide

Running Spark Applications

• Running tiny executors (with a single core and just enough memory needed to run a single task, for example)
offsets the benefits of running multiple tasks in a single JVM. For example, broadcast variables must be replicated
once on each executor, so many small executors results in many more copies of the data.

Resource Tuning Example

Consider a cluster with six hosts running NodeManagers, each equipped with 16 cores and 64 GB of memory.

The NodeManager capacities, yarn.nodemanager.resource.memory-mb and
yarn.nodemanager.resource.cpu-vcores, should be set to 63 * 1024 = 64512 (megabytes) and 15, respectively.
Avoid allocating 100% of the resources to YARN containers because the host needs some resources to run the OS and
Hadoop daemons. In this case, leave one GB and one core for these system processes. Cloudera Manager accounts
for these and configures these YARN properties automatically.

You might consider using --num-executors 6 --executor-cores 15 --executor-memory 63G. However,
this approach does not work:

• 63 GB plus the executor memory overhead does not fit within the 63 GB capacity of the NodeManagers.
• The ApplicationMaster uses a core on one of the hosts, so there is no room for a 15-core executor on that host.
• 15 cores per executor can lead to bad HDFS I/O throughput.

Instead, use --num-executors 17 --executor-cores 5 --executor-memory 19G:

• This results in three executors on all hosts except for the onewith the ApplicationMaster, which has two executors.
• --executor-memory is computed as (63/3 executors per host) = 21. 21 * 0.07 = 1.47. 21 - 1.47 ~ 19.

Tuning the Number of Partitions

Spark has limited capacity to determine optimal parallelism. Every Spark stage has a number of tasks, each of which
processes data sequentially. The number of tasks per stage is themost important parameter in determining performance.

As described in Spark Execution Model on page 8, Spark groups datasets into stages. The number of tasks in a stage
is the same as the number of partitions in the last dataset in the stage. The number of partitions in a dataset is the
same as the number of partitions in the datasets on which it depends, with the following exceptions:

• The coalesce transformation creates a dataset with fewer partitions than its parent dataset.
• The union transformation creates a dataset with the sum of its parents' number of partitions.
• The cartesian transformation creates a dataset with the product of its parents' number of partitions.

Datasets with no parents, such as those produced by textFile or hadoopFile, have their partitions determined by
the underlying MapReduce InputFormat used. Typically, there is a partition for each HDFS block being read. The
number of partitions for datasets produced by parallelize are specified in the method, or
spark.default.parallelism if not specified. To determine the number of partitions in an dataset, call
rdd.partitions().size().

If the number of tasks is smaller than number of slots available to run them, CPU usage is suboptimal. In addition, more
memory is used by any aggregation operations that occur in each task. In join, cogroup, or *ByKey operations,
objects are held in hashmaps or in-memory buffers to group or sort. join, cogroup, and groupByKey use these data
structures in the tasks for the stages that are on the fetching side of the shuffles they trigger. reduceByKey and
aggregateByKey use data structures in the tasks for the stages on both sides of the shuffles they trigger. If the records
in these aggregation operations exceed memory, the following issues can occur:

• Increased garbage collection, which can lead to pauses in computation.
• Spilling data to disk, causing disk I/O and sorting, which leads to job stalls.

To increase the number of partitions if the stage is reading from Hadoop:

• Use the repartition transformation, which triggers a shuffle.
• Configure your InputFormat to create more splits.
• Write the input data to HDFS with a smaller block size.

Spark Guide | 49

Running Spark Applications

If the stage is receiving input from another stage, the transformation that triggered the stage boundary accepts a
numPartitions argument:

val rdd2 = rdd1.reduceByKey(_ + _, numPartitions = X)

Determining the optimal value for X requires experimentation. Find the number of partitions in the parent dataset,
and then multiply that by 1.5 until performance stops improving.

You can also calculate X using a formula, but some quantities in the formula are difficult to calculate. The main goal is
to run enough tasks so that the data destined for each task fits in the memory available to that task. The memory
available to each task is:

(spark.executor.memory * spark.shuffle.memoryFraction * spark.shuffle.safetyFraction)/
spark.executor.cores

memoryFraction and safetyFraction default to 0.2 and 0.8 respectively.

The in-memory size of the total shuffle data is more difficult to determine. The closest heuristic is to find the ratio
between shuffle spill memory and the shuffle spill disk for a stage that ran. Then, multiply the total shuffle write by
this number. However, this can be compounded if the stage is performing a reduction:

(observed shuffle write) * (observed shuffle spill memory) * (spark.executor.cores)/
(observed shuffle spill disk) * (spark.executor.memory) * (spark.shuffle.memoryFraction)
 * (spark.shuffle.safetyFraction)

Then, round up slightly, because too many partitions is usually better than too few.

When in doubt, err on the side of a larger number of tasks (and thus partitions). This contrasts with recommendations
for MapReduce, which unlike Spark, has a high startup overhead for tasks.

Reducing the Size of Data Structures

Data flows through Spark in the form of records. A record has two representations: a deserialized Java object
representation and a serialized binary representation. In general, Spark uses the deserialized representation for records
in memory and the serialized representation for records stored on disk or transferred over the network. For sort-based
shuffles, in-memory shuffle data is stored in serialized form.

The spark.serializer property controls the serializer used to convert between these two representations. Cloudera
recommends using the Kryo serializer, org.apache.spark.serializer.KryoSerializer.

The footprint of your records in these two representations has a significant impact on Spark performance. Review the
data types that are passed and look for places to reduce their size. Large deserialized objects result in Spark spilling
data to disk more often and reduces the number of deserialized records Spark can cache (for example, at the MEMORY
storage level). The Apache Spark tuning guide describes how to reduce the size of such objects. Large serialized objects
result in greater disk and network I/O, as well as reduce the number of serialized records Spark can cache (for example,
at the MEMORY_SER storage level.) Make sure to register any custom classes you use with the
SparkConf#registerKryoClasses API.

Choosing Data Formats

When storing data on disk, use an extensible binary format like Avro, Parquet, Thrift, or Protobuf and store in a sequence
file.

50 | Spark Guide

Running Spark Applications

https://spark.apache.org/docs/1.6.0/tuning.html#memory-tuning
https://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.SparkConf
https://hadoop.apache.org/docs/current/api/org/apache/hadoop/io/SequenceFile.html
https://hadoop.apache.org/docs/current/api/org/apache/hadoop/io/SequenceFile.html

Spark and Hadoop Integration

Important: Spark does not support accessing multiple clusters in the same application.

This section describes how to access various Hadoop ecosystem components from Spark.

Accessing HBase from Spark
You can use Spark to process data that is destined for HBase. See Importing Data Into HBase Using Spark.

You can also use Spark in conjunction with Apache Kafka to stream data from Spark to HBase. See Importing Data Into
HBase Using Spark and Kafka.

The host from which the Spark application is submitted or on which spark-shell or pyspark runs must have an
HBase gateway role defined in Cloudera Manager and client configurations deployed.

Limitation with Region Pruning for HBase Tables

When SparkSQL accesses an HBase table through the HiveContext, region pruning is not performed. This limitation
can result in slower performance for some SparkSQL queries against tables that use the HBase SerDes than when the
same table is accessed through Impala or Hive.

Limitations in Kerberized Environments

The following limitations apply to Spark applications that access HBase in a Kerberized cluster:

• The application must be restarted every seven days. This limitation is due to Spark-on-HBase not obtaining
delegation tokens and is related to SPARK-12523. (Although this issue is resolved in Spark 2, Spark-on-HBase for
Spark 2 is not supported with CDH.)

• If the cluster also has HA enabled, you must specify the keytab and principal parameters in your command
line (as opposed to using kinit). For example:

spark-shell --jars MySparkHbaseApp.jar --principal ME@DOMAIN.COM --keytab
/path/to/local/keytab ...

spark-submit --class com.example.SparkHbaseApp --principal ME@DOMAIN.COM --keytab
/path/to/local/keytab
SparkHBaseApp.jar [application parameters....]"

For further information, see Spark Authentication.

Accessing Hive from Spark
The host from which the Spark application is submitted or on which spark-shell or pyspark runs must have a Hive
gateway role defined in Cloudera Manager and client configurations deployed.

When a Spark job accesses a Hive view, Spark must have privileges to read the data files in the underlying Hive tables.
Currently, Spark cannot use fine-grained privileges based on the columns or the WHERE clause in the view definition.
If Spark does not have the required privileges on the underlying data files, a SparkSQL query against the view returns
an empty result set, rather than an error.

Spark Guide | 51

Spark and Hadoop Integration

http://www.cloudera.com/documentation/enterprise/latest/topics/admin_hbase_import.html#concept_asc_ctz_wp_unique_1
http://www.cloudera.com/documentation/enterprise/latest/topics/admin_hbase_import.html#concept_txp_cx3_hq_unique_1
http://www.cloudera.com/documentation/enterprise/latest/topics/admin_hbase_import.html#concept_txp_cx3_hq_unique_1
https://www.cloudera.com/documentation/spark2/latest/topics/spark2_known_issues.html#ki_spark_on_hbase
https://www.cloudera.com/documentation/spark2/latest/topics/spark2_known_issues.html#ki_spark_on_hbase

Running Spark Jobs from Oozie
For CDH 5.4 and higher you can invoke Spark jobs from Oozie using the Spark action. For information on the Spark
action, see Oozie Spark Action Extension.

In CDH 5.4, to enable dynamic allocation when running the action, specify the following in the Oozie workflow:

<spark-opts>--conf spark.dynamicAllocation.enabled=true
--conf spark.shuffle.service.enabled=true
--conf spark.dynamicAllocation.minExecutors=1
</spark-opts>

If you have enabled the shuffle service in Cloudera Manager, you do not need to specify
spark.shuffle.service.enabled.

Building and Running a Crunch Application with Spark
Developing and Running a Spark WordCount Application on page 9 provides a tutorial on writing, compiling, and
running a Spark application. Using the tutorial as a starting point, do the following to build and run a Crunch application
with Spark:

1. Along with the other dependencies shown in the tutorial, add the appropriate version of the crunch-core and
crunch-spark dependencies to the Maven project.

<dependency>
 <groupId>org.apache.crunch</groupId>
 <artifactId>crunch-core</artifactId>
 <version>${crunch.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.crunch</groupId>
 <artifactId>crunch-spark</artifactId>
 <version>${crunch.version}</version>
 <scope>provided</scope>
</dependency>

2. Use SparkPipeline where you would have used MRPipeline in the declaration of your Crunch pipeline.
SparkPipeline takes either a String that contains the connection string for the Spark master (local for local
mode, yarn for YARN) or a JavaSparkContext instance.

3. As you would for a Spark application, use spark-submit start the pipeline with your Crunch application
app-jar-with-dependencies.jar file.

For an example, see Crunch demo. After building the example, run with the following command:

spark-submit --class com.example.WordCount
crunch-demo-1.0-SNAPSHOT-jar-with-dependencies.jar \
hdfs://namenode_host:8020/user/hdfs/input hdfs://namenode_host:8020/user/hdfs/output

52 | Spark Guide

Spark and Hadoop Integration

https://archive.cloudera.com/cdh5/cdh/5/oozie/DG_SparkActionExtension.html
https://crunch.apache.org/getting-started.html
https://crunch.apache.org/user-guide.html#sparkpipeline
https://github.com/jwills/crunch-demo/tree/spark

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

Cloudera | 53

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

54 | Cloudera

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Cloudera | 55

Appendix: Apache License, Version 2.0

	Table of Contents
	Apache Spark Overview
	Running Your First Spark Application
	Spark Application Overview
	Spark Application Model
	Spark Execution Model

	Developing Spark Applications
	Developing and Running a Spark WordCount Application
	Using Spark Streaming
	Spark Streaming and Dynamic Allocation
	Spark Streaming Example
	Enabling Fault-Tolerant Processing in Spark Streaming
	Configuring Authentication for Long-Running Spark Streaming Jobs

	Using Spark SQL
	SQLContext and HiveContext
	Querying Files Into a DataFrame
	Spark SQL Example
	Ensuring HiveContext Enforces Secure Access
	Interaction with Hive Views
	Performance and Storage Considerations for Spark SQL DROP TABLE PURGE

	Using Spark MLlib
	Running a Spark MLlib Example
	Enabling Native Acceleration For MLlib

	Accessing External Storage from Spark
	Accessing Compressed Files
	Accessing Data Stored in Amazon S3 through Spark
	Accessing Avro Data Files From Spark SQL Applications
	API Examples

	Accessing Parquet Files From Spark SQL Applications

	Building Spark Applications
	Building Applications
	Building Reusable Modules
	Packaging Different Versions of Libraries with an Application

	Configuring Spark Applications
	Configuring Spark Application Properties in spark-defaults.conf
	Configuring Properties in spark-defaults.conf Using Cloudera Manager
	Configuring Properties in spark-defaults.conf Using the Command Line

	Configuring Spark Application Logging Properties
	Configuring Logging Properties Using Cloudera Manager
	Configuring Logging Properties Using the Command Line

	Running Spark Applications
	Submitting Spark Applications
	spark-submit Options
	Cluster Execution Overview
	Running Spark Applications on YARN
	Deployment Modes
	Configuring the Environment
	Running a Spark Shell Application on YARN
	Submitting Spark Applications to YARN
	Monitoring and Debugging Spark Applications
	Example: Running SparkPi on YARN
	Configuring Spark on YARN Applications
	Dynamic Allocation
	Optimizing YARN Mode in Unmanaged CDH Deployments

	Using PySpark
	Running Spark Python Applications
	Spark and IPython and Jupyter Notebooks

	Tuning Spark Applications

	Spark and Hadoop Integration
	Accessing HBase from Spark
	Accessing Hive from Spark
	Running Spark Jobs from Oozie
	Building and Running a Crunch Application with Spark

	Appendix: Apache License, Version 2.0

